628 resultados para STYRENE
Resumo:
The role of Bronsted acidity of titanium silicalite zeolite (with different ratios of Si/Ti) in oxidation reactions of styrene has been investigated and discussed. For zeolites with Si/Ti > 42, most of the titanium is in the zeolite framework. These framework titanium species, which act both as the isolated titanium centers and as Bronsted acidity centers (together with the Bronsted acidity produced by the tetrahedral aluminum impurity introduced during synthesis), can catalyze both the epoxidation and the succeeding rearrangement reactions, thus promoting the formation of phenylacetaldehyde. With an increase in the titanium content of the zeolite, titanium will tend to stay outside the zeolite lattice, except for the TiOx nanophases which can be occluded in the zeolite channels or on the external surface. These non-framework titanium species are favorable for the carbon-carbon bond scission, leading to the production of additional benzaldehyde. The catalytic performances of these zeolites with different Si/Ti ratios are correlated here with their structural information by using solid-state NMR and UV-Vis methods. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Asymmetric cyclopropanation of olefins was carried out with chiral copper-Schiff base complexes derived from copper acetate monohydrate, substituted salicylaldehydes and a chiral amino alcohol. Substituents on salicylaldehyde framework demonstrate a significant effect on the steroselectivities. Those with electron-withdrawing properties enhance the selectivities, whereas bulky sustituents in ortho position to the phenol hydroxy group decrease the selectivities. An ee of more than 98% was achieved for the reaction of styrene with diazoacetate. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A new copper-(Schiff-base) complex, derived from (S)-2-amino-1,1-di(3,5-di-t-butylphenyl)propanol, 2-hydroxy-5-nitrobenzaldehyde and copper acetate monohydrate, was used as an efficient catalyst for the cyclopropanation of styrene with diazoacetates, affording ees of up to 98%. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A novel catalyst system based on nickel(II) tetraphenylporphyrin (Ni(II)TPP) and methylaluminoxane for styrene polymerization was developed. This catalyst system has a high thermal stability and show fairly good activity. The obtained polystyrene (PS) was isotactic-rich atactic polymer by C-13 NMR analysis, and its molecular weight distribution was rather narrow (M-w/M-n approximate to 1.6, by GPC analysis). ESR revealed that Ni(II)TPP pi cation radicals were formed in the polymerization and could remain in the resulting PS stably. The mechanism of the polymerization was discussed and a special coordination mechanism was proposed. The PS product containing Ni(II)TPP pi cation radicals can be used as a potential functional material.
Resumo:
The deformation mechanism of a styrene/n-butyl acrylate copolymer latex film subjected to uniaxial tensile stress was studied by small-angle X-ray scattering. The influence of annealing at 23, 60, 80, and 100 degrees C for 4 h on microscopic deformation processes was elucidated. It was demonstrated that the microscopic deformation mechanism of the latex films transformed gradually from nonaffine deformation behavior to affine deformation behavior with increasing annealing temperature.
Resumo:
Polyaniline was used as a nonmetal catalyst in the oxidative dehydrogenation of ethylbenzene and yield of 22.9% at 573 K and similar to 40% at 673 K were obtained, respectively. An indirect oxidative dehydrogenation mechanism was proposed based on the results of pulse reactions.
Resumo:
We have synthesized a porous co-polyimide film by coagulating a polyimide precursor in the non-solvent and thermal imidization. Factors affecting the morphology, pore size, porosity, and mechanical strength of the film were discussed. The porous polyimide matrix consists of a porous top layer and a spongy sub-structure with micropores. It is used as a porous matrix to construct sulfonated poly(styrene-ran-ethylene) (SPSE) infiltrated composite membrane for direct methanol fuel cell (DMFC) application. Due to the complete inertness to methanol and the very high mechanical strength of the polyimide matrix, the swelling of the composite membrane is greatly suppressed and the methanol crossover is also significantly reduced, while high proton conductivity is still maintained. Because of its higher proton conductivity and less methanol permeability, single fuel cell performance test demonstrated that this composite membrane outperformed Nafion membrane.
Resumo:
The epsilon-caprolactam was used to block the isocyanate group to enhance the storage stability of allyl (3-isocyanate-4-tolyl) carbamate. The spectra of FTIR and NMR showed that blocked allyl (3-isocyanate-4-tolyl) carbamate (BTAI) possesses two chemical functions, an 1-olefin double bond and a blocked isocyanate group. The FTIR spectrum showed BTAI could regenerate isocyanate group at elevated temperature. DSC and TG/DTA indicated the minimal dissociation temperature was about 135 degrees C and the maximal dissociation rate appeared at 226 degrees C. Then the styrene-b-(ethylene-co-1-butene)-b-styrene triblock copolymer (SEBS) was functionalized by BTAI via melt free radical grafting. The effect of temperature, monomer and initiator concentrations on the grafting degree and grafting efficiency was evaluated. The highest grafting degree was obtained at 200 degrees C. The grafting degree and grafting efficiency increased with the enhanced concentration of BTAI or initiator.
Resumo:
An effective electrochemiluminescence (ECL) sensor based on Nafion/poly(sodium 4-styrene sulfonate) (PSS) composite film-modified ITO electrode was developed. The Nafion/PSS/Ru composite film was characterized by atomic force microscopy, UV-vis absorbance spectroscopy and electrochemical experiments. The Nafion/PSS composite film could effectively immobilize tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) via ion-exchange and electrostatic interaction. The ECL behavior of Ru(bpy)(3)(2+) immobilized in Nafion/PSS composite film was investigated using tripropylamine (TPA) as an analyte. The detection limit (S/N = 3) for TPA at the Nafion/PSS/Ru composite-modified electrode was estimated to be 3.0 nM, which is 3 orders of magnitude lower than that obtained at the Nafion/Ru modified electrode. The Nafion/PSS/Ru composite film-modified indium tin oxide (ITO) electrode also exhibited good ECL stability. In addition, this kind of immobilization approach was simple, effective, and timesaving.
Resumo:
The influence of montmorillonite (MMT) on the syndiotactic polymerization behavior of styrene was studied. To avoid the hydrophilic surface of the MMT coming into contact with the catalyst, which could poison it, SAN was introduced between the MMT and Cp*Ti (OCH3)(3). MMT was introduced into the catalytic system as a supporter for the Ti catalyst (supported catalytic system) or just dispersed in the polymerization solvent directly (in situ polymerization system). The polymerization results showed that surface modification of MMT dramatically affected the catalytic activity as well as the syndiotacticity of the polymers. This is mainly explained by the insulator SAN preventing the formation of the inactive/little active species Si-O-Ti and other atactic active species resulting from the reaction of the -OH on the MMT layer surface with Cp*Ti(OCH3)(3).
Resumo:
Well-ordered nanostructured polymeric supramolecular thin films were fabricated from the supramolecular assembly of poly(styrene-block-4-vinylpyridine) (PS-b-P4VP)(H+) and poly(methyl methacrylate)-dibenzo-18-crown-6-poly(methyl methacrylate) (PMCMA). A depression Of cylindrical nanodomains was formed by the block of P4VP(H+) and PMCMA associates surrounded by PS. The repulsive force aroused from the incompatibility between the block of P4VP(H+) and PMCMA was varied through changing the molecule weight (M-w) of PMCMA, the volume fraction of the block of P4VP(H+), and annealing the film at high temperature. Increasing the repulsive force led to a change of overall morphology from ordered nanoporous to featureless structures. The effects of solvent nature and evaporation rate on the film morphology were also investigated. Further evolution of surface morphologies from nanoporous to featureless to nanoporous structures was observed upon exposure to carbon bisulfide vapors for different treatment periods. The wettability of the film surface was changed from hydrophilicity to hydrophobicity due to the changes of the film surface microscopic composition.
Resumo:
Poly(4-styrene sulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT/PSS) films with ring-, arrow-, and bubble-like microstructures have been electrochemically generated simply by a one-step cyclic voltammetry in an aqueous media. Influences of applied potentials and surfactant/dopant-PSS on morphology of the resulting film were investigated, and a gas bubble template mechanism has been proposed. The result confirmed a well-doping of PSS in the PEDOT film. Electrochemical property and conductivity of the micro-structured PEDOT/PSS film were investigated further. Similar preparation with potential applications in fabrication of microdevices and micro-sensors can be extended to other micro-structured conducting polymers.