976 resultados para STRESS-CONCENTRATIONS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: The objective of the present study was to evaluate a prefabricated intraradicular threaded pure titanium post, designed and developed at the Sao Jose dos Campos School of Dentistry - UNESP, Brazil. This new post was designed to minimize stresses observed with prefabricated post systems and to improve cost-benefits. Materials and and methods: Fracture resistance testing of the post/core/root complex, fracture analysis by microscopy and stress analysis by the finite element method were used for post evaluation. The following four prefabricated metal post systems were analyzed: group 1, experimental post; group 2, modification of the experimental post; group 3, Flexi Post, and group 4, Para Post. For the analysis of fracture resistance, 40 bovine teeth were randomly assigned to the four groups (n=10) and used for the fabrication of test specimens simulating the situation in the mouth. The test specimens were subjected to compressive strength testing until fracture in an EMIC universal testing machine. After fracture of the test specimens, their roots were sectioned and analyzed by microscopy. For the finite element method, specimens of the fracture resistance test were simulated by computer modeling to determine the stress distribution pattern in the post systems studied. Results: The fracture test presented the following averages and standard deviation: G1 (45.63 +/- 8.77), G2 (49.98 +/- 7.08), G3 (43.84 +/- 5.52), G4 (47.61 +/- 7.23). Stress was homogenously distributed along the body of the intraradicular post in group 1, whereas high stress concentrations in certain regions were observed in the other groups. These stress concentrations in the body of the post induced the same stress concentration in root dentin. Conclusions: The experimental post (original and modified versions) presented similar fracture resistance and better results in the stress analysis when compared with the commercial post systems tested (08/2008PA/CEP).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: The maintenance and stability of peri-implantar soft tissue seem to be related to the crestal bone around the implant platform and different implant designs connections might affect this phenomenon. The aim of this study was to evaluate by photoelastic analysis the stress distribution in the cervical and apical site of implant-abutment interface of conventional implant joints (external hex, internal hex and cone morse) and compare to the novel platform switching design. Materials and methods: It was fabricated photoelastic models using five different implant-abutment connection, one set of external hex (Alvim Ti, Neodent, Curitiba, Brazil), one set of internal hex (Full Osseotite, Biomet 3i, Florida, USA), one cone morse set (Alvim CM, Neodent, Curitiba, Brazil), and two sets of internal hex plus platform switching concept (Alvim II Plus, Neodent, Curitiba, Brazil) (Certain Prevail, Biomet 3i, Florida, USA). These models were submitted to two compressive loads, axial from 20 kgf (load I) and another (load II), inclined 45° from 10 kgf. During the qualitative analysis, digital pictures were taken from a polariscope, for each load situation. For the quantitative analyses in both situations of load, the medium, minimum and maximum in MPa values of shear strain were determined in the cervical and apical site. The Kruskal-Wallis test was used to compare the results between the different systems and between cervical and apical site were compared using Mann-Whitney U test. Results: The results from qualitative analysis showed less concentration of strain in the cervical area to the internal hex plus platform switching (Certain Prevail), in both situation of load. The same results were get in the quantitative analysis, showing less stress concentrations around the implant Certain Prevail with internal hex plus the novel design (17.9 MPa to load I and 29.5 MPa to load II), however, without statistical significant difference between the systems. Conclusion: The minor stress concentration strongly suggest the use of platform switching design as a manner to prevent bone loss around the implant-abutment platform. Clinical Significance: From the result of this study its possible to make clinical decision for implant system which provides implant components with platform switching characteristics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A análise da estabilidade mecânica de um poço pode ser feita a partir do cálculo de parâmetros elásticos da formação utilizando a densidade do meio e as velocidades de propagação das ondas compressional e cisalhante na formação rochosa, os quais podem ser obtidos de perfis geofísicos do poço. Em formações sedimentares pouco consolidadas as ferramentas de perfilagem sônica convencionais (monopolares) não conseguem registrar com acuidade a velocidade da onda cisalhante pois a primeira chegada dessa onda é camuflada pela chegada de outras ondas que podem ser mais rápidas que a onda cisalhante num poço perfurado neste tipo de formação. Medidas das velocidades sônicas são feitas em laboratório em amostras da formação, sob condições semelhantes às condições in situ, servindo como ajuste das velocidades registradas no poço pela ferramenta de perfilagem sônica. Para a análise de estabilidade da formação, perfis auxiliares são necessários como o perfil de porosidade, saturação de fluidos e perfis de composição mineralógica da formação rochosa. Exige-se ainda dados de testes de avaliação da formação e de condições do reservatório, mas que são comuns em poços de petróleo, como o teste de formação e os testes de pressurização do poço, tais como o teste de micro-fraturamento hidráulico ou o teste de absorção. A avaliação das tensões principais efetivas que atuam distante do poço, e que não são afetadas pela sua presença, é feita através da associação de um modelo de deformação elástica apropriado e o resultado do teste de pressurização disponível para o poço em estudo. Utilizando resultados clássicos da teoria da elasticidade geral pode-se calcular o campo de tensões modificado na vizinhança da parede do poço devido ao efeito da própria presença do poço ali perfurado e da diferença de pressão existente entre o interior do poço e a formação rochosa. A determinação das propriedades mecânicas da formação a partir das velocidades sônicas e a avaliação do campo de tensões assumindo um modelo elástico de deformação, supõem o meio rochoso no qual as ondas se propagam como elástico, homogêneo e isotrópico. Esta suposição representa a principal aproximação assumida pela metodologia descrita neste trabalho. De posse das propriedades mecânicas da formação e do campo de tensões que age na vizinhança do poço resta definir o critério segundo o qual a rocha sofre instabilidade mecânica quando submetida aquele campo de tensões. Isto permite determinar se, nas condições avaliadas do poço e da formação, haverá quebra da parede do poço por excesso de tensão e, se houver, qual a sua extensão. Assim o problema é como analisar o comportamento mecânico de um poço em uma formação pouco consolidada a partir de perfis geofísicos os quais podem ter problemas no registro das propriedades físicas do meio em formações deste tipo. A metodologia proposta é aplicada a dois intervalos de profundidade pertencentes a dois poços onde arenitos e folhelhos se intercalam e nos quais todos os dados necessários estão disponíveis. Os resultados obtidos mostram que, exceto quando outros mecanismos de quebra da parede do poço agem na formação, a metodologia proposta consegue com sucesso detectar zonas de ocorrência de instabilidade mecânica do poço provocadas por um campo de tensões que excede a resistência mecânica da formação.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The purpose of this study is to analyze the tension distribution on bone tissue around implants with different angulations (0 degrees, 17 degrees, and 30 degrees) and connections (external hexagon and tapered) through the use of three-dimensional finite element and statistical analyses.Methods: Twelve different configurations of three-dimensional finite element models, including three inclinations of the implants (0 degrees, 17 degrees, and 30 degrees), two connections (an external hexagon and a tapered), and two load applications (axial and oblique), were simulated. The maximum principal stress values for cortical bone were measured at the mesial, distal, buccal, and lingual regions around the implant for each analyzed situation, totaling 48 groups. Loads of 200 and 100 N were applied at the occlusal surface in the axial and oblique directions, respectively. Maximum principal stress values were measured at the bone crest and statistically analyzed using analysis of variance. Stress patterns in the bone tissue around the implant were analyzed qualitatively.Results: The results demonstrated that under the oblique loading process, the external hexagon connection showed significantly higher stress concentrations in the bone tissue (P < 0.05) compared with the tapered connection. Moreover, the buccal and mesial regions of the cortical bone concentrated significantly higher stress (P < 0.005) to the external hexagon implant type. Under the oblique loading direction, the increased external hexagon implant angulation induced a significantly higher stress concentration (P = 0.045).Conclusions: The study results show that: 1) the oblique load was more damaging to bone tissue, mainly when associated with external hexagon implants; and 2) there was a higher stress concentration on the buccal region in comparison to all other regions under oblique load.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work is to analyze the behavior of context concentrated stresses generated around a nozzle connected to a pressure vessel. For this analysis we used the finite element method via a computer interface, the software ANSYS WORKBENCH. It was first necessary to study and intensive training of the software used, and also a study of the ASME Code, Section VIII, which is responsible for the standards used in pressure vessels. We analyzed three cases, which differ primarily in the variation of the diameter of the nozzle in order to analyze the variation of the stresses according to the variation of the diameters. The nozzle diameters were 35, 75 and 105 mm. After the model designed vessel, a pressure was applied on the innervessel of 0.5 MPa. For the smallest diameter, was found the lowest tensions concentrated. Varying between 1 and 223 MPa. Increasing the diameter of the nozzle resulted in increased tensions concentrated around the junction nozzle /vessel. The maximum stresses increased by 78% when the value was increased in diameter from 35 to 75 mm. Since the increase in diameter from 75 to 105 mm, the values of the tensions increased around 43%. These figures emphasize that stress concentrations increased with increasing the diameter of the nozzles, but not linearly

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to evaluate the influence of implant angulation and abutment type (UCLA and Estheticone) on stress distribution in screw-retained implant-supported prostheses through photoelasticity. Three models were fabricated with photoelastic resin PL-2 (Vishay, Micro-Measurements Group, Inc Raleigh, N.C., USA) containing one external hexagon implant with 3.75x10mm (Master screw, Conexão Sistemas de Prótese Ltda., Arujá, São Paulo) with 0°, 17° and 30° degrees and a screw-retained prostheses with UCLA and Estheticone abutments. The assembly was positioned in a circular polariscope; axial and oblique (45° degrees) loads of 100N were applied in fixed points on the occlusal crown surfaces by a universal testing machine. The stress generated was photographed and analyzed qualitatively with appropriate software (Adobe Photoshop®). The results demonstrated the same number of fringes for both abutment types for each angulation, with fringes increasing in the same way. A higher number of fringes were closer in the oblique loading mode. It was concluded that there was no significant difference in stress distribution in prostheses with UCLA and Estheticone abutments. Higher stress concentrations were observed with increased implant angulation. Stress concentration and intensity were higher in the oblique load than in axial load application.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tiefherd-Beben, die im oberen Erdmantel in einer Tiefe von ca. 400 km auftreten, werden gewöhnlich mit dem in gleicher Tiefe auftretenden druckabhängigen, polymorphen Phasenübergang von Olivine (α-Phase) zu Spinel (β-Phase) in Verbindung gebracht. Es ist jedoch nach wie vor unklar, wie der Phasenübergang mit dem mechanischen Versagen des Mantelmaterials zusammenhängt. Zur Zeit werden im Wesentlichen zwei Modelle diskutiert, die entweder Mikrostrukturen, die durch den Phasenübergang entstehen, oder aber die rheologischen Veränderungen des Mantelgesteins durch den Phasenübergang dafür verantwortlich machen. Dabei sind Untersuchungen der Olivin→Spinel Umwandlung durch die Unzugänglichkeit des natürlichen Materials vollständig auf theoretische Überlegungen sowie Hochdruck-Experimente und Numerische Simulationen beschränkt. Das zentrale Thema dieser Dissertation war es, ein funktionierendes Computermodell zur Simulation der Mikrostrukturen zu entwickeln, die durch den Phasenübergang entstehen. Des Weiteren wurde das Computer Modell angewandt um die mikrostrukturelle Entwicklung von Spinelkörnern und die Kontrollparameter zu untersuchen. Die Arbeit ist daher in zwei Teile unterteilt: Der erste Teil (Kap. 2 und 3) behandelt die physikalischen Gesetzmäßigkeiten und die prinzipielle Funktionsweise des Computer Modells, das auf der Kombination von Gleichungen zur Errechnung der kinetischen Reaktionsgeschwindigkeit mit Gesetzen der Nichtgleichgewichtsthermodynamik unter nicht-hydostatischen Bedingungen beruht. Das Computermodell erweitert ein Federnetzwerk der Software latte aus dem Programmpaket elle. Der wichtigste Parameter ist dabei die Normalspannung auf der Kornoberfläche von Spinel. Darüber hinaus berücksichtigt das Programm die Latenzwärme der Reaktion, die Oberflächenenergie und die geringe Viskosität von Mantelmaterial als weitere wesentliche Parameter in der Berechnung der Reaktionskinetic. Das Wachstumsverhalten und die fraktale Dimension von errechneten Spinelkörnern ist dabei in guter Übereinstimmung mit Spinelstrukturen aus Hochdruckexperimenten. Im zweiten Teil der Arbeit wird das Computermodell angewandt, um die Entwicklung der Oberflächenstruktur von Spinelkörnern unter verschiedenen Bedigungen zu eruieren. Die sogenannte ’anticrack theory of faulting’, die den katastrophalen Verlauf der Olivine→Spinel Umwandlung in olivinhaltigem Material unter differentieller Spannung durch Spannungskonzentrationen erklärt, wurde anhand des Computermodells untersucht. Der entsprechende Mechanismus konnte dabei nicht bestätigt werden. Stattdessen können Oberflächenstrukturen, die Ähnlichkeiten zu Anticracks aufweisen, durch Unreinheiten des Materials erklärt werden (Kap. 4). Eine Reihe von Simulationen wurde der Herleitung der wichtigsten Kontrollparameter der Reaktion in monomineralischem Olivin gewidmet (Kap. 5 and Kap. 6). Als wichtigste Einflüsse auf die Kornform von Spinel stellten sich dabei die Hauptnormalspannungen auf dem System sowie Heterogenitäten im Wirtsminerals und die Viskosität heraus. Im weiteren Verlauf wurden die Nukleierung und das Wachstum von Spinel in polymineralischen Mineralparagenesen untersucht (Kap. 7). Die Reaktionsgeschwindigkeit der Olivine→Spinel Umwandlung und die Entwicklung von Spinelnetzwerken und Clustern wird durch die Gegenwart nicht-reaktiver Minerale wie Granat oder Pyroxen erheblich beschleunigt. Die Bildung von Spinelnetzwerken hat das Potential, die mechanischen Eigenschaften von Mantelgestein erheblich zu beeinflussen, sei es durch die Bildung potentieller Scherzonen oder durch Gerüstbildung. Dieser Lokalisierungprozess des Spinelwachstums in Mantelgesteinen kann daher ein neues Erklärungsmuster für Tiefbeben darstellen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polyetheretherketone (PEEK) is a novel polymer with potential advantages for its use in demanding orthopaedic applications (e.g. intervertebral cages). However, the influence of a physiological environment on the mechanical stability of PEEK has not been reported. Furthermore, the suitability of the polymer for use in highly stressed spinal implants such as intervertebral cages has not been investigated. Therefore, a combined experimental and analytical study was performed to address these open questions. A quasi-static mechanical compression test was performed to compare the initial mechanical properties of PEEK-OPTIMA polymer in a dry, room-temperature and in an aqueous, 37 degrees C environment (n=10 per group). The creep behaviour of cylindrical PEEK polymer specimens (n=6) was measured in a simulated physiological environment at an applied stress level of 10 MPa for a loading duration of 2000 hours (12 weeks). To compare the biomechanical performance of different intervertebral cage types made from PEEK and titanium under complex loading conditions, a three-dimensional finite element model of a functional spinal unit was created. The elastic modulus of PEEK polymer specimens in a physiological environment was 1.8% lower than that of specimens tested at dry, room temperature conditions (P<0.001). The results from the creep test showed an average creep strain of less than 0.1% after 2000 hours of loading. The finite element analysis demonstrated high strain and stress concentrations at the bone/implant interface, emphasizing the importance of cage geometry for load distribution. The stress and strain maxima in the implants were well below the material strength limits of PEEK. In summary, the experimental results verified the mechanical stability of the PEEK-OPTIMA polymer in a simulated physiological environment, and over extended loading periods. Finite element analysis supported the use of PEEK-OPTIMA for load-bearing intervertebral implants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To track down potential sites of material failure in the tile–mortar–substrate systems, locations and intensities of stress concentrations owing to drying-induced shrinkage are investigated. For this purpose, mechanical properties were measured on real systems and used as input parameters for numerical modeling of the effect of shrinkage of substrate and/or mortar using the finite element code Abaqus. On the base of different geometrical set-ups we demonstrate that stress concentrations in the mortar can become critical when (i) substantial mortar shrinkage occurs, (ii) substrate shrinkage can accumulate over considerable spatial distances, particularly (iii) in situations where the mortar layer is not separated from the substrate by a flexible waterproofing membrane. Hence material failure in the system tile–mortar–substrate can be prevented (or reduced) by (i) an application of the tiles after the major stages of substrate shrinkage, (ii) the use of elasto-plastic deformable tile adhesives which can react elastically on local stress concentrations, (iii) the implementation of flexible membranes, and (iv) a reduction of the field size by the installation of flexible joints.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Laboratory compressional wave (Vp) and shear wave (Vs) velocities were measured as a function of confining pressure for the gabbros from Hole 735B and compared to results from Leg 118. The upper 500 m of the hole has a Vp mean value of 6895 m/s measured at 200 MPa, and at 500 meters below seafloor (mbsf), Vp measurements show a mean value of 7036 m/s. Vs mean values in the same intervals are 3840 m/s and 3857 m/s, respectively. The mean Vp and Vs values obtained from log data in the upper 600 m are 6520 and 3518 m/s, respectively. These results show a general increase in velocity with depth and the velocity gradients estimate an upper mantle depth of 3.32 km. This value agrees with previous work based on dredged samples and inversion of rare element concentrations in basalts dredged from the conjugate site to the north of the Atlantis Bank. Laboratory measurements show Vp anisotropy ranging between 0.4% and 8.8%, with the majority of the samples having values less than 3.8%. Measurements of velocity anisotropy seem to be associated with zones of high crystal-plastic deformation with predominant preferred mineral orientations of plagioclase, amphiboles, and pyroxenes. These findings are consistent with results on gabbros from the Hess Deep area and suggest that plastic deformation may play an important role in the seismic properties of the lower oceanic crust. In contrast to ophiolite studies, many of the olivine gabbros show a small degree of anisotropy. Log derived Vs anisotropy shows an average of 5.8% for the upper 600 m of Hole 735B and tends to decrease with depth where the overburden pressure and the age of the crustal section suggests closure of cracks and infilling of fractures by alteration minerals. Overall the results indicate that the average shear wave splitting in Hole 735B might be influenced by preferred structural orientations and the average value of shear wave splitting may not be a maximum because structural dips are <90°. The maximum fast-wave orientation values could be influenced by structural features striking slightly oblique to this orientation or by near-field stress concentrations. However, flexural wave dispersion analyses have not been performed to confirm this hypothesis or to indicate to what extent the near-field stresses may be influencing shear wave propagation. Acoustic impedance contrasts calculated from laboratory and logging data were used to generate synthetic seismograms that aid in the interpretation of reflection profiles. Several prominent reflections produced by these calculations suggest that Fe-Ti oxides and shear zones may contribute to the reflective nature of the lower oceanic crust. Laboratory velocity attenuation (Q) measurements from below 500 m have a mean value of 35.1, which is consistent with previous vertical seismic profile (VSP) and laboratory measurements on the upper 500 m.