916 resultados para STIMULATING-HORMONE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Introduction Alfa-melanocyte stimulating hormone (α-MSH) has a variety of biological functions such as downregulation of pro-inflammatory pathways, reduction of skin delayed-type hypersensitivity and blockage of leukocyte migration. Inhibition of experimental disease models development including inflammatory bowel disease and rheumatoid arthritis has been shown, however the immunomodulatory and anti-inflammatory effects of α-MSH on murine lupus remain undetermined. Objectives To evaluate the effect of α-MSH analogue (NDP α-MSH) on pristane-induced murine lupus. Methods Thirty-five BALB/c mice were injected with 0.5 ml intraperitoneal (IP) pristane for lupus-like model induction and 5 age/gender matched control mice were given saline. Pristane-induced lupus animals received daily IP saline (n = 5) or treatments with 3.1 mg/kg/d chloroquine (n = 10), 1.25 mg/kg/d NDP α-MSH (n = 10) or 2.5 mg/kg/d NDP α-MSH (n = 10). Prior and 180 days after induction, clinical and laboratorial lupus-like parameters were examined. Sera ANA was tested by IF using Hep2 cells. Statistical analysis was performed by Mann-Whitney and Fisher test and P < 0,05 considered significant. Results Arthritis in both hind legs and large amounts of lipogranulomas in peritoneal cavity were observed in all lupus-like animals in contrast to all controls. By visual observation, all lupus animals treated with both doses of α-MSH had significant less amount and lower size lipogranulomas. Mean arthritis score in 5 untreated mice, 9 animals treated with chloroquine and 8 with α-MSH 2.5 mg/kg/d was 5.2, 3.33 and 3.1 respectively. Remarkably, mean arthritis score of animals treated with α-MSH 1.25 mg/kg/d was 1.6, significantly lower than untreated mice (1.6 vs 5.2, p = 0.0291). ANAs were negative in sera from all 40 animals before pristane lupus injection; 180 days after induction, ANAs remained negative in normal mice but became positive in all 5 (100%) untreated lupus animals, 7 (77%), 4 (50%) and 3 (35%) lupus models treated with chloroquine, α-MSH 2.5 mg/kg/d and α-MSH 1.25 mg/kg/d (100% vs 35%, p = 0,0256), respectively. Before the end of the experiment, by day 150, 3 animals died: 1 treated with chloroquine and 2 with higher doses of α-MSH. Conclusion NDP α-MSH promoted improvement of clinical and serological parameters in pristane-induced murine lupus suggesting a potential role for this drug in human SLE.
Resumo:
Increasing evidence supports GnRH agonists to be an effective treatment to preserve ovarian function during chemotherapy, but the initial flare-up of FSH during the first week after GnRH agonist application still limits its use. The combination of GnRH agonists with GnRH antagonists might solve this problem to some extent as the addition of GnRH antagonists at least significantly reduces the FSH flare-up.
Resumo:
The effects of superovulatory treatment (follicle stimulating hormone [FSH] versus human menopausal gonadotropin [HMG]) and of route of administration (intramuscular versus intravenous) of prostaglandin F2a (PGF2a) on hormonal profiles were determined in 32 Angus x Hereford heifers for breeding and subsequent embryo collection and transfer. Heifers were superstimulated either with FSH (total of 26 milligrams) or HMG (total of 1,050 international units) beginning on days 9 to 12 of an estrous cycle and PGF2a (40 milligrams) was administered at 60 and 72 hours after the beginning of superovulatory treatments. Heifers were artificially inseminated three times at 12-hour intervals beginning 48 hours after PGF2a treatment. Blood serum samples were collected immediately before treatments began and at frequent intervals until embryo collection 288 hours later. Concentrations of luteinizing hormone (LH) and FSH were not affected by hormone treatments, route of PGF2a injection, or interactions between them. Estradiol-17ß (E2-17ß) levels were higher in HMG- than in FSH-treated heifers 60 hours after gonadotropin treatment. Peak concentration of E2-17ß occurred earlier in HMGthan in FSH-treated heifers and earlier in heifers injected with PGF2a intramuscularly than those injected intravenously. Progesterone concentrations were not influenced by treatment or route of PGF2a administration. The progesterone:E2-17ß ratio was higher in FSH- than in HMG-treated heifers 24 hours after the LH peak. The high steroid hormone concentrations in superovulated beef heifers before and after ovulation may lead to asynchrony between stages of embryonic development, a situation that may interfere with the pregnancy outcome of superovulated embryos in recipient animals.
Resumo:
Previous studies indicated that there is a separate hypothalamic control of follicle-stimulating hormone (FSH) release distinct from that of luteinizing hormone (LH). An FSH-releasing factor (FSHRF) was purified from rat and sheep hypothalami, but has not been isolated. We hypothesized that FSHRF might be an analogue of mammalian luteinizing hormone-releasing hormone (m-LHRH) and evaluated the activity of many analogues of m-LHRH and of the known LHRHs found in lower forms. Here we demonstrate that lamprey (l) LHRH-III has a potent, dose-related FSH- but not LH-releasing action on incubated hemipituitaries of male rats. l-LHRH-I on the other hand, had little activity to release either FSH or LH. m-LHRH was equipotent to l-LHRH-III to release FSH, but also had a high potency to release LH in contrast to l-LHRH-III that selectively released FSH. Chicken LHRH-II had considerable potency to release both LH and FSH, but no selectivity in its action. Salmon LHRH had much less potency than the others tested, except for l-LHRH-I, and no selectivity in its action. Because ovariectomized, estrogen, progesterone-treated rats are a sensitive in vivo assay for FSH- and LH-releasing activity, we evaluated l-LHRH-III in this assay and found that it had a completely selective stimulatory effect on FSH release at the two doses tested (10 and 100 pmols). Therefore, l-LHRH-III is a highly potent and specific FSH-releasing peptide that may enhance fertility in animals and humans. It may be the long sought after m-FSHRF.
Resumo:
Pituitary gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone stimulate the gonads by regulating germ cell proliferation and differentiation. FSH receptors (FSH-Rs) are localized to testicular Sertoli cells and ovarian granulosa cells and are coupled to activation of the adenylyl cyclase and other signaling pathways. Activation of FSH-Rs is considered essential for folliculogenesis in the female and spermatogenesis in the male. We have generated mice lacking FSH-R by homologous recombination. FSH-R-deficient males are fertile but display small testes and partial spermatogenic failure. Thus, although FSH signaling is not essential for initiating spermatogenesis, it appears to be required for adequate viability and motility of the sperms. FSH-R-deficient females display thin uteri and small ovaries and are sterile because of a block in folliculogenesis before antral follicle formation. Although the expression of marker genes is only moderately altered in FSH-R −/− mice, drastic sex-specific changes are observed in the levels of various hormones. The anterior lobe of the pituitary gland in females is enlarged and reveals a larger number of FSH- and thyroid-stimulating hormone (TSH)-positive cells. The phenotype of FSH-R −/− mice is reminiscent of human hypergonadotropic ovarian dysgenesis and infertility.
Resumo:
Transcription factor CREM (cAMP-responsive element modulator) plays a pivotal role in the nuclear response to cAMP in neuroendocrine cells. We have previously shown that follicle-stimulating hormone (FSH) directs CREM expression in male germ cells. The physiological importance of FSH in Sertoli cell function prompted us to analyze its effect on CREM expression in these cells. We observed a dramatic and specific increase in the CREM isoform ICER (inducible cAMP early repressor) expression, with a peak 4 h after FSH treatment of primary Sertoli cells. Interestingly, induced levels of ICER protein persist for a considerably longer time. Induction of the repressor ICER accompanies early down-regulation of the FSH receptor transcript, which leads to long-term desensitization. Here we show that ICER represses FSH receptor expression by binding to a CRE-like sequence in the regulatory region of the gene. Our results confirm the crucial role played by CREM in hormonal control and suggest its role in the long-term desensitization phenomenon of peptide membrane receptors.
Resumo:
Thyroid gland function is regulated by the hypothalamic-pituitary axis via the secretion of TSH, according to environmental, developmental, and circadian stimuli. TSH modulates both the secretion of thyroid hormone and gland trophism through interaction with a specific guanine nucleotide-binding protein-coupled receptor (TSH receptor; TSH-R), which elicits the activation of the cAMP-dependent signaling pathway. After TSH stimulation, the levels of TSH-R RNA are known to decrease dramatically within a few hours. This phenomenon ultimately leads to homologous long-term desensitization of the TSH-R. Here we show that TSH drives the induction of the inducible cAMP early repressor (ICER) isoform of the cAMP response element (CRE) modulator gene both in rat thyroid gland and in the differentiated thyroid cell line FRTL-5. The kinetics of ICER protein induction mirrors the down-regulation of TSH-R mRNA. ICER binds to a CRE-like sequence in the TSH-R promoter and represses its expression. Thus, ICER induction by TSH in the thyroid gland represents a paradigm of the molecular mechanism by which pituitary hormones elicit homologous long-term desensitization.
Resumo:
alpha-Melanocyte-stimulating hormone (alpha-MSH) is a potent inhibitory agent in all major forms of inflammation. To identify a potential mechanism of antiinflammatory action of alpha-MSH, we tested its effects on production of nitric oxide (NO), believed to be a mediator common to all forms of inflammation. We measured NO and alpha-MSH production in RAW 264.7 cultured murine macrophages stimulated with bacterial lipopolysaccharide and interferon gamma. alpha-MSH inhibited production of NO, as estimated from nitrite production and nitration of endogenous macrophage proteins. This occurred through inhibition of production of NO synthase II protein; steady-state NO synthase II mRNA abundance was also reduced. alpha-MSH increased cAMP accumulation in RAW cells, characteristic of alpha-MSH receptors in other cell types. RAW cells also expressed mRNA for the primary alpha-MSH receptor (melanocortin 1). mRNA for proopiomelanocortin, the precursor molecular of alpha-MSH, was expressed in RAW cells, and tumor necrosis factor alpha increased production and release of alpha-MSH. These results suggest that the proinflammatory cytokine tumor necrosis factor alpha can induce macrophages to increase production of alpha-MSH, which then becomes available to act upon melanocortin receptors on the same cells. Such stimulation of melanocortin receptors could modulate inflammation by inhibiting the production of NO. The results suggest that alpha-MSH is an autocrine factor in macrophages which modulates inflammation by counteracting the effects of proinflammatory cytokines.
Resumo:
Background: Azoospermia is the medical condition of a man not having any measurable level of sperm in his semen. Follicle stimulating hormone (FSH) is a member of the glycoprotein hormone family that plays an important role in human reproduction because of its essential role in normal spermatogenesis. Various Single Nucleotide Polymorphisms (SNPs) have been reported within FSH receptor (FSHR) gene that may affect the receptor function. Objective: The present study aimed to investigate the correlation between two FSHR SNPs at positions A919G, A2039G, and susceptibility to azoospermia in a group of Iranian azoospermic men. The association between FSH levels within the sera and A919G and A2039G alleles and genotypes were also investigated. Materials and Methods: This case control study was performed on 212 men with azoospermia (126 non-obstructive and 86 obstructive) and 200 healthy Iranian men. Two FSHR gene SNPs were genotyped using PCR-RFLP method. The relationship between FSH levels within the sera and A919G and A2039G alleles and genotypes were also investigated. Results: Statistical analysis indicated that at A919G position, AA genotype and A allele were more frequent in obstructive azoospermia cases compared to non- obstructive or normal men (p=0.001). Regarding A2039G polymorphisms, no significant difference was observed between both azoospermia groups and the controls. The mean level of serum FSH was higher in the non-obstructive men compared to the obstructive patients (23.8 versus 13.8, respectively, p= 0.04). Conclusion: The results of the present study indicated that the genetic polymorphisms in the FSHR gene might increase the susceptibility to azoospermia in Iranian men.
Resumo:
Background: Poor ovarian response phenomenon has been observed in some of the in vitro fertilization-embryo transfer patients. Some investigations found that follicle stimulating hormone receptor (FSHR) gene plays a role in the process, but no direct evidence shows the correlation between genotypes of FSHR and ovarian response. Objective: Exploring the molecular mechanism behind the mutation of FSHR promoter association with ovarian granulosa cells and poor ovarian response. Materials and Methods: This cross sectional study was performed using 158 women undergoing the controlled short program ovarian stimulation for IVF treatment. The 263 bp DNA fragments before the follicle stimulating hormone (FSH) receptor 5' initiation site were sequenced in the patients under IVF cycle, 70 of which had poor ovarian response and 88 showed normal ovarian responses. Results: With a mutation rate of 40%, 63 in 158 cases showed a 29th site G→A point mutation; among the mutated cases, the mutation rate of the poor ovarian responders was significantly higher than the normal group (60% versus 23.9%; χ2=21.450, p<0.001). Besides, the variability was also obvious in antral follicle count, and ovum pick-ups. The estradiol peak values and the number of mature eggs between the two groups had significant difference. However, there was no obvious variability (t=0.457, p=0.324) in the basic FSH values between the two groups (normal group, 7.2±2.3 U/L; mutation group, 7.1±2.0 U/L). Conclusion: The activity of FSHR promoter is significantly affected by the 29th site G→A mutation that will weaken promoter activity and result in poor response to FSH.
Resumo:
To identify the underlying mechanism of amenorrhea in juvenile systemic lupus erythematosus (JSLE) patients, thirty-five (11.7%) JSLE patients with current or previous amenorrhea were consecutively selected among the 298 post-menarche patients followed in 12 Brazilian pediatric rheumatology centers. Pituitary gonadotrophins [follicle-stimulating hormone (FSH) and luteinizing hormone (LH)] and estradiol were evaluated in 32/35 patients, and prolactin and total testosterone in 29/35 patients. Patient`s medical records were carefully reviewed according to demographic, clinical and therapeutic findings. The mean duration of amenorrhea was 7.2 +/- A 3.6 months. Low FSH or LH was observed in 7/32 (22%) JSLE patients and normal FSH or LH in 25 (78%). Remarkably, low levels of FSH or LH were associated with higher frequency of current amenorrhea (57% vs. 0%, P = 0.001), higher median disease activity (SLEDAI) and damage (SLICC/ACR-DI) (18 vs. 4, P = 0.011; 2 vs. 0, P = 0.037, respectively) and higher median current dose of prednisone (60 vs. 10 mg/day, P = 0.0001) compared to normal FSH or LH JSLE patients. None of them had decreased ovarian reserve and premature ovarian failure. Six of 29 (21%) patients had high levels of prolactin, and none had current amenorrhea. No correlations were observed between levels of prolactin and SLEDAI, and levels of prolactin and SLICC/ACR-DI scores (Spearman`s coefficient). We have identified that amenorrhea in JSLE is associated with high dose of corticosteroids indicated for active disease due to hypothalamic-pituitary-ovary axis suppression.
Resumo:
Male patients with an extra sex chromosome or autosome are expected to present primary hypogonadism at puberty owing to meiotic germ-cell failure. Scarce information is available on trisomy 21, a frequent autosomal aneuploidy. Our objective was to assess whether trisomy 21 presents with pubertal-onset, germ-cell specific, primary hypogonadism in males, or whether the hypogonadism is established earlier and affects other testicular cell populations. We assessed the functional status of the pituitary-testicular axis, especially Sertoli cell function, in 117 boys with trisomy 21 (ages: 2 months-20 year). To compare with an adequate control population, we established reference levels for serum anti-Mullerian hormone (AMH) in 421 normal males, from birth to adulthood, using a recently developed ultrasensitive assay. In trisomy 21, AMH was lower than normal, indicating Sertoli cell dysfunction, from early infancy, independently of the existence of cryptorchidism. The overall prevalence rate of AMH below the 3rd percentile was 64.3% in infants with trisomy 21. Follicle-stimulating hormone was elevated in patients <6 months and after pubertal onset. Testosterone was within the normal range, but luteinizing hormone was elevated in most patients <6 months and after pubertal onset, indicating a mild Leydig cell dysfunction. We conclude that in trisomy 21, primary hypogonadism involves a combined dysfunction of Sertoli and Leydig cells, which can be observed independently of cryptorchidism soon after birth, thus prompting the search for new hypotheses to explain the pathophysiology of gonadal dysfunction in autosomal trisomy.
Resumo:
Purpose: To correlate ovarian reserve (OR) markers with response in assisted reproduction techniques (ART) and determine their ability to predict poor response among patients with endometriosis (EDT). Methods: We evaluated ART cycles of 27 women with EDT and 50 with exclusive male factor. Basal follicle stimulating hormone (FSH) and anti-mullerian hormone (AMH) levels were determined. Ovarian response to gonadotropin stimulation was assessed and correlation coefficients calculated between the variables and reserve markers. Areas under the curve (AUC) determined ability of tests to predict poor response. Results: AMH was significantly correlated with response in both groups and it was the only marker with significant discriminative capacity to predict poor response among EDT (AUC = 0.842; 95% CI: 0.651-0.952) and control group (AUC = 0.869; 95% CI: 0.743-0.947). Conclusion: Infertile patients with endometriosis can benefit from the pre-therapeutic assessment of OR markers. However, regardless of disease presence, only AMH predicts poor response to stimulus.