984 resultados para STEARIC-ACID


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H2O2). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H2O2 (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H2O2 (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Brazil is one of the three largest producers of fruits in the world, and among those fruit trees, the cashew tree stands out due to the high nutritional and commercial value of its products. During its fruit processing, there are losses in some compounds and few studies address this issue. Over the last decade the conventional system of food production has been substituted for the organic cultivation system, which is a promising alternative source of income given the global demand for healthy food. Therefore, this research aimed to characterize and quantify the prevalent fatty acids found in cashew nuts obtained from conventional and organic cultivation during various stages of processing. The prevalent fatty acids found were palmitic, linoleic, oleic, and stearic acid. The average of these fatty acids were 6.93 ± 0.55; 16.99 ± 0.61; 67.62 ± 1.00 and 8.42 ± 0.55 g/100 g, respectively. There was no reduction in the palmitic, oleic and stearic fatty acid contents during processing. Very little difference was observed between the nuts obtained from conventional and organic cultivation, indicating that the method of cultivation used has little or no influence on the content of cashew nut fatty acids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Food industry has been developing products to meet the demands of increasing number of consumers who are concerned with their health and who seek food products that satisfy their needs. Therefore, the development of processed foods that contain functional components has become important for this industry. Microencapsulation can be used to reduce the effects of processing on functional components and preserve their bioactivity. The present study investigated the production of lipid microparticles containing phytosterols by spray chilling. The matrices comprised mixtures of stearic acid and hydrogenated vegetable fat, and the ratio of the matrix components to phytosterols was defined by an experimental design using the mean diameters of the microparticles as the response variable. The melting point of the matrices ranged from 44.5 and 53.4 ºC. The process yield was melting point dependent; the particles that exhibited lower melting point had greater losses than those with higher melting point. The microparticles' mean diameters ranged from 13.8 and 32.2 µm and were influenced by the amount of phytosterols and stearic acid. The microparticles exhibited spherical shape and typical polydispersity of atomized products. From a technological and practical (handling, yield, and agglomeration) points of view, lipid microparticles with higher melting point proved promising as phytosterol carriers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemical composition and nutritive value of hot pepper seeds (Capsicum annuum) grown in Northeast Region of China were investigated. The proximate analysis showed that moisture, ash, crude fat, crude protein and total dietary fiber contents were 4.48, 4.94, 23.65, 21.29 and 38.76 g/100 g, respectively. The main amino acids were glutamic acid and aspartic acid (above 2 g/100 g), followed by histidine, phenylalanine, lysine, arginine, cysteine, leucine, tryptophan, serine, glycine, methionine, threonine and tyrosine (0.8-2 g/100 g). The contents of proline, alanine, valine and isoleucine were less than 0.8 g/100 g. The fatty acid profile showed that linoleic acid, palmitic acid, oleic acid, stearic acid and linolenic acid (above 0.55 g/100 g) as the most abundant fatty acids followed lauric acid, arachidic acid, gondoic acid and behenic acid (0.03-0.15 g/100 g). Analyses of mineral content indicated that the most abundant mineral was potassium, followed by magnesium, calcium, iron, zinc, sodium and manganese. The nutritional composition of hot pepper seeds suggested that they could be regarded as good sources of food ingredients and as new sources of edible oils.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lipids were extracted from Chlorella algae with supercritical hexane. The high lipids yield of approximately 10% was obtained at optimum conditions of 300 rpm stirring speed and 2 h duration compared to the total contents of lipids being 12%. Furthermore, an easiness of hexane recovery may be considered as economically and ecologically attractive. For the first time, in the current work catalytic hydrodeoxygenation (HDO) of Chlorella algal lipids was studied over 5 wt% Ni/H-Y-80 and 5 wt% Ni/SiO2 at 300 C and under 30 bar total pressure in H2. A comparative HDO of stearic acid was carried out under similar conditions. The conversion of lipids was about 35% over 5 wt% Ni/H-Y-80 after 6h, whereas, 5 wt% Ni/SiO2 was totally deactivated after 60 min. The selectivity to hydrocarbons (C15-C18) is 6%. As a comparison, complete conversion of stearic acid over 5 wt% Ni/H-Y-80 was achieved in 6 h. The transformation of lipids proceeded mostly via hydrogenation and hydrolysis with formation of free fatty acid (FFA). The lower activity might be attributed to deactivation of catalysts caused by chlorophylls and carotenoids. Even though the conversion is low, future studies in HDO of lipids extracted from other algae species having higher lipid content could be proposed. Coke resistant catalyst might be considered to improve catalytic activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Contexte L’américanisation des habitudes de vie, notamment de l’alimentation, semble être en grande partie responsable de l’augmentation incessante de l’incidence élevée des maladies cardiovasculaires. La période postprandiale, où l’homéostasie vasculaire et métabolique est mise à l’épreuve, est d’une importance considérable dans le développement ou la prévention de l’athérosclérose et représente maintenant la majeure partie du temps d’éveil. La compréhension de l’influence de la composition d’un repas sur son impact postprandial est donc essentielle dans notre lutte dans la prévention de ces maladies. Objectifs L’objectif principal de ce projet de recherche était d’étudier les réponses endothéliale et métabolique à un repas de type méditerranéen mixte (MMM), puisqu’elles sont inconnues. Ce projet avait aussi pour objectifs d’évaluer l’impact microvasculaire d’un tel repas et de caractériser la composition postprandiale des acides gras plasmatiques. À titre comparatif, ces éléments ont aussi été étudiés suite à un repas riche en gras saturés (HSFAM). Méthodes Vingt-huit (28) hommes sains, exempts de facteurs de risque de maladies cardiovasculaires ont reçu de façon randomisée les deux repas à l’étude. Le MMM, composé de saumon frais et de légumes cuits dans l'huile d'olive, contenait 7.87g de SFA et 2.29g d’acides gras polyinsaturés oméga-3, tandis que le HSFAM, composé d'un sandwich déjeuner avec œuf, saucisse et fromage, contenait 14.78g de SFA. Les mesures de la fonction endothéliale mesurée par échographie brachiale (FMD), de la fonction microvasculaire mesurée par spectroscopie proche de l’infrarouge (NIRS) et de la composition des acides gras plasmatique ont été effectuées à jeun et en période postprandiale. Résultats Deux sous-groupes de répondeurs aux repas à l’étude se sont dégagés de ces travaux. Un premier sous-groupe de sujets ayant une triglycéridémie à jeun élevée, mais normale (hnTG) a démontré des altérations endothéliales seulement suivant le repas HSFAM. Un second sous-groupe de sujets ayant une triglycéridémie plus faible et normale (lnTG) n’a quant à lui pas subi d’altérations endothéliales suivant les deux repas à l’étude. Les sujets hnTG ont aussi démontré une charge triglycéridémique postprandiale (iAUC) plus importante et qui était de surcroît enrichie en acide stéarique suivant la HSFAM et en acide gras polyinsaturés oméga-3 suivant le MMM. L’évaluation par NIRS de la fonction microvasculaire nous révèle un ralentissement de la réoxygénation post-ischémique qui suggère une altération postprandiale du recrutement capillaire chez les sujets hnTG seulement. De telles altérations, qui semblent être plus importantes suivant le HSFAM, pourraient être en partie responsables de l’impact endothélial de ce repas. Conclusions Cet essai clinique démontre donc de façon novatrice qu’un repas MMM n’a pas d’effet endothélial délétère et que cette neutralité est indépendante de la triglycéridémie à jeun. De plus, une triglycéridémie à jeun élevée mais normale semble indiquer des dysfonctions endothéliales et métaboliques à des épreuves nutritionnelles tel un repas HSFAM. La consommation de repas méditerranéens par des individus sains à la triglycéridémie marginale serait bénéfique, peut-être même davantage que pour des individus de triglycéridémie plus faible, dans la prévention de l’athérogénèse et des maladies cardiovasculaires.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies conducted on butadiene-acrylonitrile copolymer (NBR)/poly(vinyl chloride) (PVC) blends at different temperatures indicate that an optimum temperature exists for the formation of a particular blend. The mechanical properties of the blends confirm this observation. PVC stabilizer based on, magnesium oxide , zinc oxide, and stearic acid was found to be very useful in NBR/PVC blends.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polychloroprene (neoprene) has been blended with polyvinylchloride (PVC) in different proportions using a new stabiliser system (magnesium oxide and zinc oxide with stearic acid) for PVC. The physical properties of the blends show that they can advantageously replace neoprene in many applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT: Phenol was chemically attached to low molecular weight chlorinated polyisobutylene and stearic acid respectively. These phenolic antioxidants were characterised by IR, 1H NMR and TGA. The efficiency and permanence of these bound antioxidants were compared with conventional antioxidants in natural rubber vulcanisates. The vulcanisates showed comparable ageing resistance in comparison to vulcanisates containing conventional antioxidants. The presence of liquid polymer bound phenol reduce the amount of plasticiser required for compounding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research project explores the utilization of cardanol in various capacities for rubber processing. Cardanol is a phenol with a long side chain in the meta position of the benzene ring. It is obtained by the vacuum distillation of cashew Hut shell liquid (CNSL) which is a cheap agro-byproduct. In this study, the plasticizer property of cardanol was investigated in silica filled and HAF black filled NR, NBR, EPDM and CR by comparing cure characteristics and mechanical properties of vulcanizates containing conventional plasticizer with those containing cardanol as plasticizer. The co-activator, antioxidant and accelerator properties were investigated in gum samples of NR, NBR, EPDM and CR by comparing the properties of vulcanizates which contain conventional co-activator, antioxidant and accelerator with those in which each of them was replaced by cardanol. The general effectiveness of cardanol was investigated by determination of cure time , measurement of physical and mechanical properties, ageing studies, crosslink density, extractability, FTIR spectra, TGA etc.The results show that cardanol can be a substitute for aromatic oil in both silica filled and HAF black filled NR. Again, it can replace dioctyl phthalate in both silica filled and HAF black filled NBR. Similarly, cardanol Can replace naphthenic oil in silica filled as well as HAF black filled EPDM and CR. The cure characteristics and mechanical properties are comparable in all the eight cases. The co-activator property of cardanol is comparable to stearic acid in all the four rubbers. The cure characteristics and mechanical properties in this case are also comparable. The antioxidant ,property of cardanol is comparable to TQ in all the four rubbers. The antioxidant property of cardanol is comparable to TQ in all the four case of NBR and EPDM.The accelerator property of cardarlol is comparable with CBS in the case of NBR and EPDM. No accelerator property is observed in the case of NR. The accelerator property of cardanol in CR is not negligible when compared with TMTD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the first part of the study we probed the effectiveness of rice bran oil as a multipurpose compounding ingredient for nitrile (NBR) and chloroprene (CR) rubbers. This oil has already been successfully employed in the compounding of NR and SBR in this laboratory.In this context we thought it worthwhile to try this oil in the polar rubbers viz, NBR and CR also. The principle of like dissolves like as applicable to solvents is equally applicable while selecting a plasticiser, elastomer combination. Because of the compatibility considerations polar plasticisers are preferred for polar rubbers like NBR and CR. Although plasticisation is a physical phenomenon and no chemical reaction is involved, the chemical structure of plasticisers determines how much physical attraction there is between the rubber and the plasticiser. In this context it is interesting to note that the various fatty acids present in rice bran oil have a long paraffinic chain, characteristic of waxes, with an acid group at the end of the molecule. The paraffinic end of the molecule contributes lubricating effects and limits compatibility whereas the acid end group contributes some polarity and is also chemically reactive. Because of absorption of acid group on the surface of pigments, these acids will have active pigment wetting characteristics also. These factors justifies the role of rice bran oil as a co-activator and lubricating agent for NBR and CR. In fact in our study we successfully replaced stearic acid as co-activator and aromatic oillDOP as processing aid for CR and NBR with rice bran oil.This part of the study has got special significance in the fact that rubber industry now heavily depends on petroleum industry for process oils. The conventional process oils like aromatic, naphthenic and paraffinic oils are increasingly becoming costlier, as its resources in nature are fast depleting. Moreover aromatic process oils are reported to be carcinogenic because of the presence of higher levels of polycyclic aromatic compounds in these oils.As a result of these factors, a great amount research is going on world over for newer processing aids which are cost effective, nontoxic and performanance wise at par with the conventional ones used in the rubber industry. Trials with vegetable oils in this direction is worth trying.Antioxidants are usually added to the rubber compound to minimise ageing effects from heat, light, oxygen etc. As rice bran oil contains significant amount of tocopherols and oryzanol which are natural antioxidants, we replaced a phenolic antioxidant like styrenated phenol (SP) from the compound recipe of both the rubbers with RBO and ascertained whether this oil could function in the role of antioxidant as well.Preparation and use of epoxidised rice bran oil as plasticiser has already been reported.The crude rice bran oil having an iodine value of 92 was epoxidised in this laboratory using peracetic acid in presence of sulphuric acid as catalyst. The epoxy content of the epoxidised oil was determined volumetrically by treating a known weight of the oil with excess HCI and back titrating the residual HCI with standard alkali solution. The epoxidised oil having an epoxy content of 3.4% was tried in the compounding of NBR and CR as processing aids. And results of these investigations are also included in this chapter. In the second part of the study we tried how RBO/ERBO could perform when used as a processing aid in place of aromatic oil in the compounding of black filled NRCR blends. Elastomers cannot have all the properties required for a particular applications, so it is common practice in rubber industry to blend two elastomers to have desired property for the resulting blend.In this RBO/ERBO was tried as a processing aid for plasticisation, dispersion of fillers, and vulcanisation of black filled NR-CR blends.Aromatic oil was used as a control. The results of our study indicate that these oils could function as a processing aid and when added together with carbon black function as a cure accelerator also.PVC is compatible with nitrile rubber in all proportions, provided NBR has an acrylonitrile content of 25 to 40%. Lower or higher ACN content in NBR makes it incompatible with PVC.PVC is usually blended with NBR at high temperatures. In order to reduce torque during mixing, additional amounts of plasticisers like DOP are added. The plasticiser should be compatible both with PVC and NBR so as to get a homogeneous blend. Epoxidised soyaben oil is reported to have been used in the compounding of PVC as it can perfonn both as an efficient plasticiser and heat stabilizer.At present DOP constitute the largest consumed plasticiser in the PVC compounding. The migration of this plasticiser from food packaging materials made of PVC poses great health hazards as this is harmful to human body. In such a scenario we also thought it worthwhile to see whether DOP could be replaced by rice bran oil in the compounding of NBR-PVC blends Different blends of NBR-PVC were prepared with RBO and were vulcanized using sulphur and conventional accelerators. The various physical and mechanical properties of the vulcanisates were evaluated and compared with those prepared with DOP as the control plasticiser. Epoxidised rice bran oil was also tried as plasticiser for the preparation of NBR-PVC blends. A comparison of the processability and cure characteristics of the different blends prepared with DOP and ERBO showed that ERBO based blends have better processability and lower cure time values. However the elastographic maximum torque values are higher for the DOP based blends. Almost all of the physical properties evaluated are found to be slightly better for the DOP based blends over the ERBO based ones. However a notable feature of the ERBO based blends is the better percentage retention of elongation at break values after ageing over the DOP based blends. The results of these studies using rice bran oil and its epoxidised variety indicated that they could be used as efficient plasticisers in place of DOP and justifies their role as novel, nontoxic, and cheap plasticisers for NBR-PVC blends.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: All members of the ruminal Butyrivibrio group convert linoleic acid (cis-9,cis-12-18 : 2) via conjugated 18 : 2 metabolites (mainly cis-9,trans-11-18 : 2, conjugated linoleic acid) to vaccenic acid (trans-11-18 : 1), but only members of a small branch, which includes Clostridium proteoclasticum, of this heterogeneous group further reduce vaccenic acid to stearic acid (18 : 0, SA). The aims of this study were to develop a real-time polymerase chain reaction (PCR) assay that would detect and quantify these key SA producers and to use this method to detect diet-associated changes in their populations in ruminal digesta of lactating cows. Materials and Results: The use of primers targeting the 16S rRNA gene of Cl. proteoclasticum was not sufficiently specific when only binding dyes were used for detection in real-time PCR. Their sequences were too similar to some nonproducing strains. A molecular beacon probe was designed specifically to detect and quantify the 16S rRNA genes of the Cl. proteoclasticum subgroup. The probe was characterized by its melting curve and validated using five SA-producing and ten nonproducing Butyrivibrio-like strains and 13 other common ruminal bacteria. Analysis of ruminal digesta collected from dairy cows fed different proportions of starch and fibre indicated a Cl. proteoclasticum population of 2-9% of the eubacterial community. The influence of diet on numbers of these bacteria was less than variations between individual cows. Conclusion: A molecular beacon approach in qPCR enables the detection of Cl. proteoclasticum in ruminal digesta. Their numbers are highly variable between individual animals. Signifance and Impact of the Study: SA producers are fundamental to the flow of polyunsaturated fatty acid and vaccenic acid from the rumen. The method described here enabled preliminary information to be obtained about the size of this population. Further application of the method to digesta samples from cows fed diets of more variable composition should enable us to understand how to control these bacteria in order to enhance the nutritional characteristics of ruminant-derived foods, including milk and beef.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surface pressure measurements and external reflection FTIR spectroscopy have been used to probe protein-lipid interactions at the air/water interface. Spread monomolecular layers of stearic acid and phosphocholine were prepared and held at different compressed phase states prior to the introduction of protein to the buffered subphase. Contrasting interfacial behaviour of the proteins, albumin and lysozyme, was observed and revealed the role of both electrostatic and hydrophobic interactions in protein adsorption. The rate of adsorption of lysozyme to the air/water interface increased dramatically in the presence of stearic acid, due to strong electrostatic interactions between the negatively charged stearic acid head group and lysozyme, whose net charge at pH 7 is positive. Introduction of albumin to the subphase resulted in solubilisation of the stearic acid via the formation of an albumin-stearic acid complex and subsequent adsorption of albumin. This observation held for both human and bovine serum albumin. Protein adsorption to a PC layer held at low surface pressure revealed adsorption rates similar to adsorption to the bare air/water interface and suggested very little interaction between the protein and the lipid. For PC layers in their compressed phase state some adsorption of protein occurred after long adsorption times. Structural changes of both lysozyme and albumin were observed during adsorption, but these were dramatically reduced in the presence of a lipid layer compared to that of adsorption to the pure air/water interface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The suitability of the caco-2 cell line as a model for studying the long term impact of dietary fatty acids on intestinal lipid handling and chylomicron production was examined. Chronic supplementation of caco-2 cells with palmitic acid (PA) resulted in a lower triacylglycerol secretion than oleic acid (OA). This was coupled with a detrimental effect of PA, but not OA, on transepithelial electrical resistance (TER) measurements, suggesting a loss of structural integrity across the cell monolayer. Addition of OA reversed the adverse effects of PA and stearic acid on TER and increased the ability of cells to synthesise and accumulate lipid, but did not normalise the secretion of lipids by caco-2 cells. Increasing amounts of OA and decreasing amounts of PA in the incubation media markedly improved the ability of cells to synthesise apolipoprotein B and secrete lipids. Real time RT-PCR revealed a down regulation of genes involved in lipoprotein synthesis following PA than OA. Electron microscopy showed adverse effects of PA on cellular morphology consistent with immature enterocytes such as stunted microvilli and poor tight junction formation. In conclusion, previously reported differences in lipoprotein secretion by caco-2 cells supplemented with saturated fatty acids (SFA) and OA may partly reflect early cytotoxic effects of SFA on cellular integrity and function. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This chapter compares the risks of chronic disease, and cardiovascular disease in particular, associated with consumption of different saturated fatty acids. Emphasis is placed on the effects of stearic acid as this has potential to replace trans fatty acids in certain manufactured food products. The chapter first reviews the effects of individual saturated fatty acids on blood lipids, including cholesterol, as these are commonly used as markers of disease risk. It then looks directly at evidence in relation to health outcomes. Finally, recent evidence specifically on the effect of stearic acid relative to other fatty acids, including trans fatty acids, is summarised.