934 resultados para SPECIES DISTRIBUTION MODELS
Resumo:
The climatic conditions of mountain habitats are greatly influenced by topography. Large differences in microclimate occur with small changes in elevation, and this complex interaction is an important determinant of mountain plant distributions. In spite of this, elevation is not often considered as a relevant predictor in species distribution models (SDMs) for mountain plants. Here, we evaluated the importance of including elevation as a predictor in SDMs for mountain plant species. We generated two sets of SDMs for each of 73 plant species that occur in the Pacific Northwest of North America; one set of models included elevation as a predictor variable and the other set did not. AUC scores indicated that omitting elevation as a predictor resulted in a negligible reduction of model performance. However, further analysis revealed that the omission of elevation resulted in large over-predictions of species' niche breadths-this effect was most pronounced for species that occupy the highest elevations. In addition, the inclusion of elevation as a predictor constrained the effects of other predictors that superficially affected the outcome of the models generated without elevation. Our results demonstrate that the inclusion of elevation as a predictor variable improves the quality of SDMs for high-elevation plant species. Because of the negligible AUC score penalty for over-predicting niche breadth, our results support the notion that AUC scores alone should not be used as a measure of model quality. More generally, our results illustrate the importance of selecting biologically relevant predictor variables when constructing SDMs.
Resumo:
Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km(2) to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally, these data should be sampled to reflect variation in the underlying environment across large spatial extents, and at fine spatial resolution. Simplified ecosystems where there are relatively few interacting species and sometimes a wealth of existing ecosystem monitoring data (e.g. arctic, alpine or island habitats) offer settings where the development of modelling tools that account for biotic interactions may be less difficult than elsewhere.
Resumo:
Questions Soil properties have been widely shown to influence plant growth and distribution. However, the degree to which edaphic variables can improve models based on topo-climatic variables is still unclear. In this study, we tested the roles of seven edaphic variables, namely (1) pH; (2) the content of nitrogen and of (3) phosphorus; (4) silt; (5) sand; (6) clay and (7) carbon-to-nitrogen ratio, as predictors of species distribution models in an edaphically heterogeneous landscape. We also tested how the respective influence of these variables in the models is linked to different ecological and functional species characteristics. Location The Western Alps, Switzerland. Methods With four different modelling techniques, we built models for 115 plant species using topo-climatic variables alone and then topo-climatic variables plus each of the seven edaphic variables, one at a time. We evaluated the contribution of each edaphic variable by assessing the change in predictive power of the model. In a second step, we evaluated the importance of the two edaphic variables that yielded the largest increase in predictive power in one final set of models for each species. Third, we explored the change in predictive power and the importance of variables across plant functional groups. Finally, we assessed the influence of the edaphic predictors on the prediction of community composition by stacking the models for all species and comparing the predicted communities with the observed community. Results Among the set of edaphic variables studied, pH and nitrogen content showed the highest contributions to improvement of the predictive power of the models, as well as the predictions of community composition. When considering all topo-climatic and edaphic variables together, pH was the second most important variable after degree-days. The changes in model results caused by edaphic predictors were dependent on species characteristics. The predictions for the species that have a low specific leaf area, and acidophilic preferences, tolerating low soil pH and high humus content, showed the largest improvement by the addition of pH and nitrogen in the model. Conclusions pH was an important predictor variable for explaining species distribution and community composition of the mountain plants considered in our study. pH allowed more precise predictions for acidophilic species. This variable should not be neglected in the construction of species distribution models in areas with contrasting edaphic conditions.
Resumo:
Remote sensing using airborne imaging spectroscopy (AIS) is known to retrieve fundamental optical properties of ecosystems. However, the value of these properties for predicting plant species distribution remains unclear. Here, we assess whether such data can add value to topographic variables for predicting plant distributions in French and Swiss alpine grasslands. We fitted statistical models with high spectral and spatial resolution reflectance data and tested four optical indices sensitive to leaf chlorophyll content, leaf water content and leaf area index. We found moderate added-value of AIS data for predicting alpine plant species distribution. Contrary to expectations, differences between species distribution models (SDMs) were not linked to their local abundance or phylogenetic/functional similarity. Moreover, spectral signatures of species were found to be partly site-specific. We discuss current limits of AIS-based SDMs, highlighting issues of scale and informational content of AIS data.
Resumo:
We analysed the relationship between changes in land cover patterns and the Eurasian otter occurrence over the course of about 20 years (1985-2006) using multi-temporal Species Distribution Models (SDMs). The study area includes five river catchments covering most of the otter's Italian range. Land cover and topographic data were used as proxies of the ecological requirements of the otter within a 300-m buffer around river courses. We used species presence, pseudo-absence data, and environmental predictors to build past (1985) and current (2006) SDMs by applying an ensemble procedure through the BIOMOD modelling package. The performance of each model was evaluated by measuring the area under the curve (AUC) of the receiver-operating characteristic (ROC). Multi-temporal analyses of species distribution and land cover maps were performed by comparing the maps produced for 1985 and 2006. The ensemble procedure provided a good overall modelling accuracy, revealing that elevation and slope affected the otter's distribution in the past; in contrast, land cover predictors, such as cultivations and forests, were more important in the present period. During the transition period, 20.5% of the area became suitable, with 76% of the new otter presence data being located in these newly available areas. The multi-temporal analysis suggested that the quality of otter habitat improved in the last 20 years owing to the expansion of forests and to the reduction of cultivated fields in riparian belts. The evidence presented here stresses the great potential of riverine habitat restoration and environmental management for the future expansion of the otter in Italy
Resumo:
1. Species distribution models are increasingly used to address conservation questions, so their predictive capacity requires careful evaluation. Previous studies have shown how individual factors used in model construction can affect prediction. Although some factors probably have negligible effects compared to others, their relative effects are largely unknown. 2. We introduce a general "virtual ecologist" framework to study the relative importance of factors involved in the construction of species distribution models. 3. We illustrate the framework by examining the relative importance of five key factors-a missing covariate, spatial autocorrelation due to a dispersal process in presences/absences, sample size, sampling design and modeling technique-in a real study framework based on plants in a mountain landscape at regional scale, and show that, for the parameter values considered here, most of the variation in prediction accuracy is due to sample size and modeling technique. Contrary to repeatedly reported concerns, spatial autocorrelation has only comparatively small effects. 4. This study shows the importance of using a nested statistical framework to evaluate the relative effects of factors that may affect species distribution models.
Resumo:
Nowadays, Species Distribution Models (SDMs) are a widely used tool. Using different statistical approaches these models reconstruct the realized niche of a species using presence data and a set of variables, often topoclimatic. There utilization range is quite large from understanding single species requirements, to the creation of nature reserve based on species hotspots, or modeling of climate change impact, etc... Most of the time these models are using variables at a resolution of 50km x 50km or 1 km x 1 km. However in some cases these models are used with resolutions below the kilometer scale and thus called high resolution models (100 m x 100 m or 25 m x 25 m). Quite recently a new kind of data has emerged enabling precision up to lm x lm and thus allowing very high resolution modeling. However these new variables are very costly and need an important amount of time to be processed. This is especially the case when these variables are used in complex calculation like models projections over large areas. Moreover the importance of very high resolution data in SDMs has not been assessed yet and is not well understood. Some basic knowledge on what drive species presence-absences is still missing. Indeed, it is not clear whether in mountain areas like the Alps coarse topoclimatic gradients are driving species distributions or if fine scale temperature or topography are more important or if their importance can be neglected when balance to competition or stochasticity. In this thesis I investigated the importance of very high resolution data (2-5m) in species distribution models using either very high resolution topographic, climatic or edaphic variables over a 2000m elevation gradient in the Western Swiss Alps. I also investigated more local responses of these variables for a subset of species living in this area at two precise elvation belts. During this thesis I showed that high resolution data necessitates very good datasets (species and variables for the models) to produce satisfactory results. Indeed, in mountain areas, temperature is the most important factor driving species distribution and needs to be modeled at very fine resolution instead of being interpolated over large surface to produce satisfactory results. Despite the instinctive idea that topographic should be very important at high resolution, results are mitigated. However looking at the importance of variables over a large gradient buffers the importance of the variables. Indeed topographic factors have been shown to be highly important at the subalpine level but their importance decrease at lower elevations. Wether at the mountane level edaphic and land use factors are more important high resolution topographic data is more imporatant at the subalpine level. Finally the biggest improvement in the models happens when edaphic variables are added. Indeed, adding soil variables is of high importance and variables like pH are overpassing the usual topographic variables in SDMs in term of importance in the models. To conclude high resolution is very important in modeling but necessitate very good datasets. Only increasing the resolution of the usual topoclimatic predictors is not sufficient and the use of edaphic predictors has been highlighted as fundamental to produce significantly better models. This is of primary importance, especially if these models are used to reconstruct communities or as basis for biodiversity assessments. -- Ces dernières années, l'utilisation des modèles de distribution d'espèces (SDMs) a continuellement augmenté. Ces modèles utilisent différents outils statistiques afin de reconstruire la niche réalisée d'une espèce à l'aide de variables, notamment climatiques ou topographiques, et de données de présence récoltées sur le terrain. Leur utilisation couvre de nombreux domaines allant de l'étude de l'écologie d'une espèce à la reconstruction de communautés ou à l'impact du réchauffement climatique. La plupart du temps, ces modèles utilisent des occur-rences issues des bases de données mondiales à une résolution plutôt large (1 km ou même 50 km). Certaines bases de données permettent cependant de travailler à haute résolution, par conséquent de descendre en dessous de l'échelle du kilomètre et de travailler avec des résolutions de 100 m x 100 m ou de 25 m x 25 m. Récemment, une nouvelle génération de données à très haute résolution est apparue et permet de travailler à l'échelle du mètre. Les variables qui peuvent être générées sur la base de ces nouvelles données sont cependant très coûteuses et nécessitent un temps conséquent quant à leur traitement. En effet, tout calcul statistique complexe, comme des projections de distribution d'espèces sur de larges surfaces, demande des calculateurs puissants et beaucoup de temps. De plus, les facteurs régissant la distribution des espèces à fine échelle sont encore mal connus et l'importance de variables à haute résolution comme la microtopographie ou la température dans les modèles n'est pas certaine. D'autres facteurs comme la compétition ou la stochasticité naturelle pourraient avoir une influence toute aussi forte. C'est dans ce contexte que se situe mon travail de thèse. J'ai cherché à comprendre l'importance de la haute résolution dans les modèles de distribution d'espèces, que ce soit pour la température, la microtopographie ou les variables édaphiques le long d'un important gradient d'altitude dans les Préalpes vaudoises. J'ai également cherché à comprendre l'impact local de certaines variables potentiellement négligées en raison d'effets confondants le long du gradient altitudinal. Durant cette thèse, j'ai pu monter que les variables à haute résolution, qu'elles soient liées à la température ou à la microtopographie, ne permettent qu'une amélioration substantielle des modèles. Afin de distinguer une amélioration conséquente, il est nécessaire de travailler avec des jeux de données plus importants, tant au niveau des espèces que des variables utilisées. Par exemple, les couches climatiques habituellement interpolées doivent être remplacées par des couches de température modélisées à haute résolution sur la base de données de terrain. Le fait de travailler le long d'un gradient de température de 2000m rend naturellement la température très importante au niveau des modèles. L'importance de la microtopographie est négligeable par rapport à la topographie à une résolution de 25m. Cependant, lorsque l'on regarde à une échelle plus locale, la haute résolution est une variable extrêmement importante dans le milieu subalpin. À l'étage montagnard par contre, les variables liées aux sols et à l'utilisation du sol sont très importantes. Finalement, les modèles de distribution d'espèces ont été particulièrement améliorés par l'addition de variables édaphiques, principalement le pH, dont l'importance supplante ou égale les variables topographique lors de leur ajout aux modèles de distribution d'espèces habituels.
Resumo:
Species distribution models (SDMs) can be useful for different conservation purposes. We discuss the importance of fitting spatial scale and using current records and relevant predictors aiming conservation. We choose jaguar (Panthera onca) as a target species and Brazil and Atlantic Forest biome as study areas. We tested two different extents (continent and biome) and resolutions (similar to 4 Km and similar to 1 Km) in Maxent with 186 records and 11 predictors (bioclimatic, elevation, land-use and landscape structure). All models presented satisfactory AUC values (>0.70) and low omission errors (<23%). SDMs were scale-sensitive as the use of reduced extent implied in significant gains to model performance generating more constrained and real predictive distribution maps. Continental-scale models performed poorly in predicting potential current jaguar distribution, but they reached the historic distribution. Specificity increased significantly from coarse to finer-scale models due to the reduction of overprediction. The variability of environmental space (E-space) differed for most of climatic variables between continental and biome-scale and the representation of the E-space by predictors differed significantly (t = 2.42, g.I. = 9, P < 0.05). Refining spatial scale, incorporating landscape variables and improving the quality of biological data are essential for improving model prediction for conservation purposes.
Resumo:
A higher risk of future range losses as a result of climate change is expected to be one of the main drivers of extinction trends in vascular plants occurring in habitat types of high conservation value. Nevertheless, the impact of the climate changes of the last 60 years on the current distribution and extinction patterns of plants is still largely unclear. We applied species distribution models to study the impact of environmental variables (climate, soil conditions, land cover, topography), on the current distribution of 18 vascular plant species characteristic of three threatened habitat types in southern Germany: (i) xero-thermophilous vegetation, (ii) mesophilous mountain grasslands (mountain hay meadows and matgrass communities), and (iii) wetland habitats (bogs, fens, and wet meadows). Climate and soil variables were the most important variables affecting plant distributions at a spatial level of 10 × 10 km. Extinction trends in our study area revealed that plant species which occur in wetland habitats faced higher extinction risks than those in xero-thermophilous vegetation, with the risk for species in mesophilous mountain grasslands being intermediary. For three plant species characteristic either of mesophilous mountain grasslands or wetland habitats we showed exemplarily that extinctions from 1950 to the present day have occurred at the edge of the species’ current climatic niche, indicating that climate change has likely been the main driver of extinction. This is largely consistent with current extinction trends reported in other studies. Our study indicates that the analysis of past extinctions is an appropriate means to assess the impact of climate change on species and that vulnerability to climate change is both species- and habitat-specific.
Resumo:
European-wide conservation policies are based on the identification of priority habitats. However, research on conservation biogeography often relies on the results and projections of species distribution models to assess species' vulnerability to global change. We assess whether the distribution and structure of threatened communities can be predicted by the suitability of the environmental conditions for their indicator species. We present some preliminary results elucidating if using species distribution models of indicator species at a regional scale is a valid approach to predict these endangered communities. Dune plant assemblages, affected by severe conditions, are excellent models for studying possible interactions among their integrating species and the environment. We use data from an extensive survey of xerophytic inland sand dune scrub communities from Portugal, one of the most threatened habitat types of Europe. We identify indicator shrub species of different types of communities, model their geographical response to the environment, and evaluate whether the output of these niche models are able to predict the distribution of each type of community in a different region.
Resumo:
AimTo identify the bioclimatic niche of the endangered Andean cat (Leopardus jacobita), one of the rarest and least known felids in the world, by developing a species distribution model.LocationSouth America, High Andes and Patagonian steppe. Peru, Bolivia, Chile, Argentina.MethodsWe used 108 Andean cat records to build the models, and 27 to test them, applying the Maxent algorithm to sets of uncorrelated bioclimatic variables from global databases, including elevation. We based our biogeographical interpretations on the examination of the predicted geographic range, the modelled response curves and latitudinal variations in climatic variables associated with the locality data.ResultsSimple bioclimatic models for Andean cats were highly predictive with only 3-4 explanatory variables. The climatic niche of the species was defined by extreme diurnal variations in temperature, cold minimum and moderate maximum temperatures, and aridity, characteristic not only of the Andean highlands but also of the Patagonian steppe. Argentina had the highest representation of suitable climates, and Chile the lowest. The most favourable conditions were centrally located and spanned across international boundaries. Discontinuities in suitable climatic conditions coincided with three biogeographical barriers associated with climatic or topographic transitions.Main conclusionsSimple bioclimatic models can produce useful predictions of suitable climatic conditions for rare species, including major biogeographical constraints. In our study case, these constraints are also known to affect the distribution of other Andean species and the genetic structure of Andean cat populations. We recommend surveys of areas with suitable climates and no Andean cat records, including the corridor connecting two core populations. The inclusion of landscape variables at finer scales, crucially the distribution of Andean cat prey, would contribute to refine our predictions for conservation applications.
Resumo:
Species distribution modelling is central to both fundamental and applied research in biogeography. Despite widespread use of models, there are still important conceptual ambiguities as well as biotic and algorithmic uncertainties that need to be investigated in order to increase confidence in model results. We identify and discuss five areas of enquiry that are of high importance for species distribution modelling: (1) clarification of the niche concept; (2) improved designs for sampling data for building models; (3) improved parameterization; (4) improved model selection and predictor contribution; and (5) improved model evaluation. The challenges discussed in this essay do not preclude the need for developments of other areas of research in this field. However, they are critical for allowing the science of species distribution modelling to move forward.
Resumo:
Mountain ecosystems will likely be affected by global warming during the 21st century, with substantial biodiversity loss predicted by species distribution models (SDMs). Depending on the geographic extent, elevation range and spatial resolution of data used in making these models, different rates of habitat loss have been predicted, with associated risk of species extinction. Few coordinated across-scale comparisons have been made using data of different resolution and geographic extent. Here, we assess whether climate-change induced habitat losses predicted at the European scale (10x10' grid cells) are also predicted from local scale data and modeling (25x25m grid cells) in two regions of the Swiss Alps. We show that local-scale models predict persistence of suitable habitats in up to 100% of species that were predicted by a European-scale model to lose all their suitable habitats in the area. Proportion of habitat loss depends on climate change scenario and study area. We find good agreement between the mismatch in predictions between scales and the fine-grain elevation range within 10x10' cells. The greatest prediction discrepancy for alpine species occurs in the area with the largest nival zone. Our results suggest elevation range as the main driver for the observed prediction discrepancies. Local scale projections may better reflect the possibility for species to track their climatic requirement toward higher elevations.
Resumo:
Indirect topographic variables have been used successfully as surrogates for disturbance processes in plant species distribution models (SDM) in mountain environments. However, no SDM studies have directly tested the performance of disturbance variables. In this study, we developed two disturbance variables: a geomorphic index (GEO) and an index of snow redistribution by wind (SNOW). These were developed in order to assess how they improved both the fit and predictive power of presenceabsence SDM based on commonly used topoclimatic (TC) variables for 91 plants in the Western Swiss Alps. The individual contribution of the disturbance variables was compared to TC variables. Maps of models were prepared to spatially test the effect of disturbance variables. On average, disturbance variables significantly improved the fit but not the predictive power of the TC models and their individual contribution was weak (5.6% for GEO and 3.3% for SNOW). However their maximum individual contribution was important (24.7% and 20.7%). Finally, maps including disturbance variables (i) were significantly divergent from TC models in terms of predicted suitable surfaces and connectivity between potential habitats, and (ii) were interpreted as more ecologically relevant. Disturbance variables did not improve the transferability of models at the local scale in a complex mountain system, and the performance and contribution of these variables were highly species-specific. However, improved spatial projections and change in connectivity are important issues when preparing projections under climate change because the future range size of the species will determine the sensitivity to changing conditions.