942 resultados para SOMATOSENSORY-EVOKED-POTENTIALS
Resumo:
Motor-evoked potentials (MEPs) vary in size from one stimulus to the next. The objective of this study was to determine the cause and source of trial-to-trial MEP size variability. In two experiments involving 10 and 14 subjects, the variability of MEPs to cortical stimulation (cortical-MEPs) in abductor digiti minimi (ADM) and abductor hallucis (AH) was compared to those responses obtained using the triple stimulation technique (cortical-TST). The TST eliminates the effects of motor neuron (MN) response desynchronization and of repetitive MN discharges. Submaximal stimuli were used in both techniques. In six subjects, cortical-MEP variability was compared to that of brainstem-MEP and brainstem-TST. Variability was greater for MEPs than that for TST responses, by approximately one-third. The variability was the same for cortical- and brainstem-MEPs and was similar in ADM and AH. Variability concerned at least 10-15% of the MN pool innervating the target muscle. With the stimulation parameters used, repetitive MN discharges did not influence variability. For submaximal stimuli, approximately two-third of the observed MEP size variability is caused by the variable number of recruited alpha-MNs and approximately one-third by changing synchronization of MN discharges. The source of variability is most likely localized at the spinal segmental level.
Resumo:
BACKGROUND: Methylphenidate (MPD) is a psychostimulant commonly prescribed for attention deficit/hyperactivity disorder. The mode of action of the brain circuitry responsible for initiating the animals' behavior in response to psychostimulants is not well understood. There is some evidence that psychostimulants activate the ventral tegmental area (VTA), nucleus accumbens (NAc), and prefrontal cortex (PFC). METHODS: The present study was designed to investigate the acute dose-response of MPD (0.6, 2.5, and 10.0 mg/kg) on locomotor behavior and sensory evoked potentials recorded from the VTA, NAc, and PFC in freely behaving rats previously implanted with permanent electrodes. For locomotor behavior, adult male Wistar-Kyoto (WKY; n = 39) rats were given saline on experimental day 1 and either saline or an acute injection of MPD (0.6, 2.5, or 10.0 mg/kg, i.p.) on experimental day 2. Locomotor activity was recorded for 2-h post injection on both days using an automated, computerized activity monitoring system. Electrophysiological recordings were also performed in the adult male WKY rats (n = 10). Five to seven days after the rats had recovered from the implantation of electrodes, each rat was placed in a sound-insulated, electrophysiological test chamber where its sensory evoked field potentials were recorded before and after saline and 0.6, 2.5, and 10.0 mg/kg MPD injection. Time interval between injections was 90 min. RESULTS: Results showed an increase in locomotion with dose-response characteristics, while a dose-response decrease in amplitude of the components of sensory evoked field responses of the VTA, NAc, and PFC neurons. For example, the P3 component of the sensory evoked field response of the VTA decreased by 19.8% +/- 7.4% from baseline after treatment of 0.6 mg/kg MPD, 37.8% +/- 5.9% after 2.5 mg/kg MPD, and 56.5% +/- 3.9% after 10 mg/kg MPD. Greater attenuation from baseline was observed in the NAc and PFC. Differences in the intensity of MPD-induced attenuation were also found among these brain areas. CONCLUSION: These results suggest that an acute treatment of MPD produces electrophysiologically detectable alterations at the neuronal level, as well as observable, behavioral responses. The present study is the first to investigate the acute dose-response effects of MPD on behavior in terms of locomotor activity and in the brain involving the sensory inputs of VTA, NAc, and PFC neurons in intact, non-anesthetized, freely behaving rats previously implanted with permanent electrodes.
Resumo:
The P2 visual evoked response in man has a cholinergic component while the P100 response has not. The P100 latency is significantly decreased after an oral dose of phenylalanine in man while the P2 signal is unaffected. Analyses of the P100 decrease shows no correlation with tyrosine levels but a significant positive correlation with plasma ane urine levels. A small group shows a P100 delay which correlated with increased neopterin levels only. Increased plasma total biopterins in man following a phenylalanine dose are due to rapidly increased tetrahydrobiopterin synthesis in the liver.
Resumo:
The Octopus Automated Perimeter was validated in a comparative study and found to offer many advantages in the assessment of the visual field. The visual evoked potential was investigated in an extensive study using a variety of stimulus parameters to simulate hemianopia and central visual field defects. The scalp topography was recorded topographically and a technique to compute the source derivation of the scalp potential was developed. This enabled clarification of the expected scalp distribution to half field stimulation using different electrode montages. The visual evoked potential following full field stimulation was found to be asymmetrical around the midline with a bias over the left occiput particularly when the foveal polar projections of the occipital cortex were preferentially stimulated. The half field response reflected the distribution asymmetry. Masking of the central 3° resulted in a response which was approximately symmetrical around the midline but there was no evidence of the PNP-complex. A method for visual field quantification was developed based on the neural representation of visual space (Drasdo and Peaston 1982) in an attempt to relate visual field depravation with the resultant visual evoked potentials. There was no form of simple, diffuse summation between the scalp potential and the cortical generators. It was, however, possible to quantify the degree of scalp potential attenuation for M-scaled full field stimuli. The results obtained from patients exhibiting pre-chiasmal lesions suggested that the PNP-complex is not scotomatous in nature but confirmed that it is most likely to be related to specific diseases (Harding and Crews 1982). There was a strong correlation between the percentage information loss of the visual field and the diagnostic value of the visual evoked potential in patients exhibiting chiasmal lesions.
Resumo:
The effects of cholinergic agents undergoing clinical trials for the treatment of Alzheimer's disease and the anticholinergic agent scopolamine, were investigated on the components of the flash and pattern reversal visual evoked potentials (VEPs) in young healthy volunteers. The effect of recording the flash and pattern reversal VEPs for 13 hours in 5 healthy male volunteers, revealed no statistically significant change in the latency or amplitude measures. Administration of the muscarinic agonist SDZ 210-086 to 16 healthy male volunteers resulted in the reduction of the flash N2-P2 and pattern reversal N75-P100 peak-to-peak amplitudes. These effects on the flash VEP occurred at both doses (0.5 and 1.0 mg/day), but only at the higher dose on the pattern reversal VEP. Administration of the antimuscarinic agent scopolamine to 11 healthy young male volunteers, resulted in a delay of the flash P2 latency but no effect on the pattern reversal P100 latency. The pattern reversal N75-P100 peak-to-peak amplitude was also increased post dosing. The combination of scopolamine with the acetylcholinesterase inhibitor SDZ ENA 713 resulted in no significant effect on the flash and pattern reversal VEPs, suggesting that the effects of scopolamine may have been partially reversed. Topical application of scopolamine in 6 young healthy volunteers also resulted in no statistically significant effects on the flash and pattern reversal VEPs. The selective effect of scopolamine on the flash P2 latency but not on the pattern reversal P100 latency, provided a model whereby new cholinergic agents developed for the treatment of Alzheimer's disease can be investigated on a physiological basis. In addition, the results of this study led to the hypothesis that the selective flash P2 delay in Alzheimer's disease was probably due to a cholinergic deficit in both the tectal pathway from the retina to the visual cortex and the magnocellular path of the geniculostriate pathway, whereas the lack of an effect on the pattern reversal P100 component was probably due to a sparing of the parvocellular geniculostriate pathway.
Resumo:
The two elcctrophysiological tests currently favoured in the clinical measurement of hearing threshold arc the brainstorm evoked potential (BAEP) and the slow vertex response (SVR). However, both tests possess disadvantages. The BAEP is the test of choice in younger patients as it is stable at all levels of arousal, but little information has been obtained to date at a range of frequencies. The SVR is frequency specific but is unreliable in certain adult subjects and is unstable during sleep or in young children. These deficiencies have prompted research into a third group of potentials, the middle latency response (MLR) and the 40HZ responses. This research has compared the SVR and 40HZ response in waking adults and reports that the 40HZ test can provide a viable alternative to the SVR provided that a high degree of subject relaxation is ensured. A second study examined the morphology of the MLR and 40HZ during sleep. This work suggested that these potentials arc markedly different during sleep and that methodological factors have been responsible for masking these changes in previous studies. The clinical possibilities of tone pip BAEPs were then examined as these components were proved to be the only stable responses present in sleep. It was found that threshold estimates to 5OOHz, lOOOHz and 4000Hz stimuli could be made to within 15dBSL in most cases. A final study looked more closely at methods of obtaining frequency specific information in sleeping subjects. Threshold estimates were made using established BAEP parameters and this was compared to a 40HZ procedure which recorded a series of BAEPs over a 100msec. time sweep. Results indicated that the 40mHz procedure was superior to existing techniques in estimating threshold to low frequency stimuli. This research has confirmed a role for the MLR and 40Hz response as alternative measures of hearing capability in waking subjects and proposes that the 40Hz technique is useful in measuring frequency specific thresholds although the responses recorded derive primarily from the brainstem.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Diabetes mellitus (DM) is a metabolic disorder which is characterised by hyperglycaemia resulting from defects in insulin secretion, insulin action or both. The long-term specific effects of DM include the development of retinopathy, nephropathy and neuropathy. Cardiac disease, peripheral arterial and cerebrovascular disease are also known to be linked with DM. Type 1 diabetes mellitus (T1DM) accounts for approximately 10% of all individuals with DM, and insulin therapy is the only available treatment. Type 2 diabetes mellitus (T2DM) accounts for 90% of all individuals with DM. Diet, exercise, oral hypoglycaemic agents and occasionally exogenous insulin are used to manage T2DM. The diagnosis of DM is made where the glycated haemoglobin (HbA1c) percentage is greater than 6.5%. Pattern-reversal visual evoked potential (PVEP) testing is an objective means of evaluating impulse conduction along the central nervous pathways. Increased peak time of the visual P100 waveform is an expression of structural damage at the level of myelinated optic nerve fibres. This was an observational cross sectional study. The participants were grouped into two phases. Phase 1, the control group, consisted of 30 healthy non-diabetic participants. Phase 2 comprised of 104 diabetic participants of whom 52 had an HbA1c greater than 10% (poorly controlled DM) and 52 whose HbA1c was 10% and less (moderately controlled DM). The aim of this study was to firstly observe the possible association between glycated haemoglobin levels and P100 peak time of pattern-reversal visual evoked potentials (PVEPs) in DM. Secondly, to assess whether the central nervous system (CNS) and in particular visual function is affected by type and/or duration of DM. The cut-off values to define P100 peak time delay was calculated as the mean P100 peak time plus 2.5 X standard deviations as measured for the non-diabetic control group, and were 110.64 ms for the right eye. The proportion of delayed P100 peak time amounted to 38.5% for both diabetic groups, thus the poorly controlled group (HbA1c > 10%) did not pose an increased risk for delayed P100 peak time, relative to the moderately controlled group (HbA1c ≤ 10%). The P100 PVEP results for this study, do however, reflect significant delay (p < 0.001) of the DM group as compared to the non-diabetic group; thus, subclincal neuropathy of the CNS occurs in 38.5% of cases. The duration of DM and type of DM had no influence on the P100 peak time measurements.
Resumo:
The clubfoot is one of the most common congenital deformities affecting the lower limbs, it still presents controversial aspects regarding etiology and treatment. In spite of its relatively high frequency, the treatment is still challenging, since the long-term aim is achieving an everlasting flexible, plantigrade, pain-free and totally functional foot. The Ponseti method has gained attention and popularity because of its satisfactory results and surgery avoidance. Presently, surgical treatment is indicated only after failure of conservative methods, avoiding extensive soft-tissue release, but performing localized corrections of the deformities, a technique also know as ""a la carte"" release. The future perspective is based on the knowledge about long-term results and new understanding of the clubfoot etiology, especially in the genetic field, which may eventually be helpful for prognostic and treatment. Level of Evidence: Level II, systematic review.
Resumo:
INTRODUCTION: Predicting outcome in comatose survivors of cardiac arrest is based on data validated by guidelines that were established before the era of therapeutic hypothermia. We sought to evaluate the predictive value of clinical, electrophysiological and imaging data on patients submitted to therapeutic hypothermia. MATERIALS AND METHODS: A retrospective analysis of consecutive patients receiving therapeutic hypothermia during years 2010 and 2011 was made. Neurological examination, somatosensory evoked potentials, auditory evoked potentials, electroencephalography and brain magnetic resonance imaging were obtained during the first 72 hours. Glasgow Outcome Scale at 6 months, dichotomized into bad outcome (grades 1 and 2) and good outcome (grades 3, 4 and 5), was defined as the primary outcome. RESULTS: A total of 26 patients were studied. Absent pupillary light reflex, absent corneal and oculocephalic reflexes, absent N20 responses on evoked potentials and myoclonic status epilepticus showed no false-positives in predicting bad outcome. A malignant electroencephalographic pattern was also associated with a bad outcome (p = 0.05), with no false-positives. Two patients with a good outcome showed motor responses no better than extension (false-positive rate of 25%, p = 0.008) within 72 hours, both of them requiring prolonged sedation. Imaging findings of brain ischemia did not correlate with outcome. DISCUSSION: Absent pupillary, corneal and oculocephalic reflexes, absent N20 responses and a malignant electroencephalographic pattern all remain accurate predictors of poor outcome in cardiac arrest patients submitted to therapeutic hypothermia. CONCLUSION: Prolonged sedation beyond the hypothermia period may confound prediction strength of motor responses.
Resumo:
The main objective of this review is to provide a descriptive analysis of the biological and physiological markers of tactile sensorial processing in healthy, full-term newborns. Research articles were selected according to the following study design criteria: (a) tactile stimulation for touch sense as an independent variable; (b) having at least one biological or physiological variable as a dependent variable; and (c) the group of participants were characterized as full-term and healthy newborns; a mixed group of full-term newborns and preterm newborns; or premature newborns with appropriate-weight-for-gestational age and without clinical differences or considered to have a normal, healthy somatosensory system. Studies were then grouped according to the dependent variable type, and only those that met the aforementioned three major criteria were described. Cortisol level, growth measures, and urinary catecholamine, serotonin, and melatonin levels were reported as biological-marker candidates for tactile sensorial processing. Heart rate, body temperature, skin-conductance activity, and vagal reactivity were described as neurovegetative-marker candidates. Somatosensory evoked potentials, somatosensory evoked magnetic fields, and functional neuroimaging data also were included.
Resumo:
PURPOSE: To assess the sensitivity and false positive rate (FPR) of neurological examination and somatosensory evoked potentials (SSEPs) to predict poor outcome in adult patients treated with therapeutic hypothermia after cardiopulmonary resuscitation (CPR). METHODS: MEDLINE and EMBASE were searched for cohort studies describing the association of clinical neurological examination or SSEPs after return of spontaneous circulation with neurological outcome. Poor outcome was defined as severe disability, vegetative state and death. Sensitivity and FPR were determined. RESULTS: A total of 1,153 patients from ten studies were included. The FPR of a bilaterally absent cortical N20 response of the SSEP could be calculated from nine studies including 492 patients. The SSEP had an FPR of 0.007 (confidence interval, CI, 0.001-0.047) to predict poor outcome. The Glasgow coma score (GCS) motor response was assessed in 811 patients from nine studies. A GCS motor score of 1-2 at 72 h had a high FPR of 0.21 (CI 0.08-0.43). Corneal reflex and pupillary reactivity at 72 h after the arrest were available in 429 and 566 patients, respectively. Bilaterally absent corneal reflexes had an FPR of 0.02 (CI 0.002-0.13). Bilaterally absent pupillary reflexes had an FPR of 0.004 (CI 0.001-0.03). CONCLUSIONS: At 72 h after the arrest the motor response to painful stimuli and the corneal reflexes are not a reliable tool for the early prediction of poor outcome in patients treated with hypothermia. The reliability of the pupillary response to light and the SSEP is comparable to that in patients not treated with hypothermia.
Resumo:
Current American Academy of Neurology (AAN) guidelines for outcome prediction in comatose survivors of cardiac arrest (CA) have been validated before the therapeutic hypothermia era (TH). We undertook this study to verify the prognostic value of clinical and electrophysiological variables in the TH setting. A total of 111 consecutive comatose survivors of CA treated with TH were prospectively studied over a 3-year period. Neurological examination, electroencephalography (EEG), and somatosensory evoked potentials (SSEP) were performed immediately after TH, at normothermia and off sedation. Neurological recovery was assessed at 3 to 6 months, using Cerebral Performance Categories (CPC). Three clinical variables, assessed within 72 hours after CA, showed higher false-positive mortality predictions as compared with the AAN guidelines: incomplete brainstem reflexes recovery (4% vs 0%), myoclonus (7% vs 0%), and absent motor response to pain (24% vs 0%). Furthermore, unreactive EEG background was incompatible with good long-term neurological recovery (CPC 1-2) and strongly associated with in-hospital mortality (adjusted odds ratio for death, 15.4; 95% confidence interval, 3.3-71.9). The presence of at least 2 independent predictors out of 4 (incomplete brainstem reflexes, myoclonus, unreactive EEG, and absent cortical SSEP) accurately predicted poor long-term neurological recovery (positive predictive value = 1.00); EEG reactivity significantly improved the prognostication. Our data show that TH may modify outcome prediction after CA, implying that some clinical features should be interpreted with more caution in this setting as compared with the AAN guidelines. EEG background reactivity is useful in determining the prognosis after CA treated with TH.