970 resultados para SNP genotyping
Resumo:
Here, we describe a female patient with autism spectrum disorder and dysmorphic features that harbors a complex genetic alteration, involving a de novo balanced translocation t(2;X)(q11;q24), a 5q11 segmental trisomy and a maternally inherited isodisomy on chromosome 5. All the possibly damaging genetic effects of such alterations are discussed. In light of recent findings on ASD genetic causes, the hypothesis that all these alterations might be acting in orchestration and contributing to the phenotype is also considered. (C) 2012 Wiley Periodicals, Inc.
Resumo:
Intense selective pressures applied over short evolutionary time have resulted in homogeneity within, but substantial variation among, horse breeds. Utilizing this population structure, 744 individuals from 33 breeds, and a 54,000 SNP genotyping array, breed-specific targets of selection were identified using an F(ST)-based statistic calculated in 500-kb windows across the genome. A 5.5-Mb region of ECA18, in which the myostatin (MSTN) gene was centered, contained the highest signature of selection in both the Paint and Quarter Horse. Gene sequencing and histological analysis of gluteal muscle biopsies showed a promoter variant and intronic SNP of MSTN were each significantly associated with higher Type 2B and lower Type 1 muscle fiber proportions in the Quarter Horse, demonstrating a functional consequence of selection at this locus. Signatures of selection on ECA23 in all gaited breeds in the sample led to the identification of a shared, 186-kb haplotype including two doublesex related mab transcription factor genes (DMRT2 and 3). The recent identification of a DMRT3 mutation within this haplotype, which appears necessary for the ability to perform alternative gaits, provides further evidence for selection at this locus. Finally, putative loci for the determination of size were identified in the draft breeds and the Miniature horse on ECA11, as well as when signatures of selection surrounding candidate genes at other loci were examined. This work provides further evidence of the importance of MSTN in racing breeds, provides strong evidence for selection upon gait and size, and illustrates the potential for population-based techniques to find genomic regions driving important phenotypes in the modern horse.
Resumo:
BACKGROUND Whole genome sequencing (WGS) is increasingly used in molecular-epidemiological investigations of bacterial pathogens, despite cost- and time-intensive analyses. We combined strain-specific single nucleotide polymorphism (SNP)-typing and targeted WGS to investigate a tuberculosis cluster spanning 21 years in Bern, Switzerland. METHODS Based on genome sequences of three historical outbreak Mycobacterium tuberculosis isolates, we developed a strain-specific SNP-typing assay to identify further cases. We screened 1,642 patient isolates, and performed WGS on all identified cluster isolates. We extracted SNPs to construct genomic networks. Clinical and social data were retrospectively collected. RESULTS We identified 68 patients associated with the outbreak strain. Most were diagnosed in 1991-1995, but cases were observed until 2011. Two thirds belonged to the homeless and substance abuser milieu. Targeted WGS revealed 133 variable SNP positions among outbreak isolates. Genomic network analyses suggested a single origin of the outbreak, with subsequent division into three sub-clusters. Isolates from patients with confirmed epidemiological links differed by 0-11 SNPs. CONCLUSIONS Strain-specific SNP-genotyping allowed rapid and inexpensive identification of M. tuberculosis outbreak isolates in a population-based strain collection. Subsequent targeted WGS provided detailed insights into transmission dynamics. This combined approach could be applied to track bacterial pathogens in real-time and at high resolution.
Resumo:
The recent development of a goat SNP genotyping microarray enables genome-wide association studies in this important livestock species. We investigated the genetic basis of the black and brown coat colour in Valais Blacknecked and Coppernecked goats. A genome-wide association analysis using goat SNP50 BeadChip genotypes of 22 cases and 23 controls allowed us to map the locus for the brown coat colour to goat chromosome 8. The TYRP1 gene is located within the associated chromosomal region, and TYRP1 variants cause similar coat colour phenotypes in different species. We thus considered TYRP1 as a strong positional and functional candidate. We resequenced the caprine TYRP1 gene by Sanger and Illumina sequencing and identified two non-synonymous variants, p.Ile478Thr and p.Gly496Asp, that might have a functional impact on the TYRP1 protein. However, based on the obtained pedigree and genotype data, the brown coat colour in these goats is not due to a single recessive loss-of-function allele. Surprisingly, the genotype distribution and the pedigree data suggest that the (496) Asp allele might possibly act in a dominant manner. The (496) Asp allele was present in 77 of 81 investigated Coppernecked goats and did not occur in black goats. This strongly suggests heterogeneity underlying the brown coat colour in Coppernecked goats. Functional experiments or targeted matings will be required to verify the unexpected preliminary findings.
Resumo:
The molecular regulation of horn growth in ruminants is still poorly understood. To investigate this process, we collected 1019 hornless (polled) animals from different cattle breeds. High-density SNP genotyping confirmed the presence of two different polled associated haplotypes in Simmental and Holstein cattle co-localized on BTA 1. We refined the critical region of the Simmental polled mutation to 212 kb and identified an overlapping region of 932 kb containing the Holstein polled mutation. Subsequently, whole genome sequencing of polled Simmental and Holstein cows was used to determine polled associated genomic variants. By genotyping larger cohorts of animals with known horn status we found a single perfectly associated insertion/deletion variant in Simmental and other beef cattle confirming the recently published possible Celtic polled mutation. We identified a total of 182 sequence variants as candidate mutations for polledness in Holstein cattle, including an 80 kb genomic duplication and three SNPs reported before. For the first time we showed that hornless cattle with scurs are obligate heterozygous for one of the polled mutations. This is in contrast to published complex inheritance models for the bovine scurs phenotype. Studying differential expression of the annotated genes and loci within the mapped region on BTA 1 revealed a locus (LOC100848215), known in cow and buffalo only, which is higher expressed in fetal tissue of wildtype horn buds compared to tissue of polled fetuses. This implicates that the presence of this long noncoding RNA is a prerequisite for horn bud formation. In addition, both transcripts associated with polledness in goat and sheep (FOXL2 and RXFP2), show an overexpression in horn buds confirming their importance during horn development in cattle.
Resumo:
Clinical, pathological and genetic examination revealed an as yet uncharacterized juvenile-onset neuroaxonal dystrophy (NAD) in Spanish water dogs. Affected dogs presented with various neurological deficits including gait abnormalities and behavioral deficits. Histopathology demonstrated spheroid formation accentuated in the grey matter of the cerebral hemispheres, the cerebellum, the brain stem and in the sensory pathways of the spinal cord. Iron accumulation was absent. Ultrastructurally spheroids contained predominantly closely packed vesicles with a double-layered membrane, which were characterized as autophagosomes using immunohistochemistry. The family history of the four affected dogs suggested an autosomal recessive inheritance. SNP genotyping showed a single genomic region of extended homozygosity of 4.5 Mb in the four cases on CFA 8. Linkage analysis revealed a maximal parametric LOD score of 2.5 at this region. By whole genome re-sequencing of one affected dog, a perfectly associated, single, non-synonymous coding variant in the canine tectonin beta-propeller repeat-containing protein 2 (TECPR2) gene affecting a highly conserved region was detected (c.4009C>T or p.R1337W). This canine NAD form displays etiologic parallels to an inherited TECPR2 associated type of human hereditary spastic paraparesis (HSP). In contrast to the canine NAD, the spinal cord lesions in most types of human HSP involve the sensory and the motor pathways. Furthermore, the canine NAD form reveals similarities to cases of human NAD defined by widespread spheroid formation without iron accumulation in the basal ganglia. Thus TECPR2 should also be considered as candidate gene for human NAD. Immunohistochemistry and the ultrastructural findings further support the assumption, that TECPR2 regulates autophagosome accumulation in the autophagic pathways. Consequently, this report provides the first genetic characterization of juvenile canine NAD, describes the histopathological features associated with the TECPR2 mutation and provides evidence to emphasize the association between failure of autophagy and neurodegeneration.
Resumo:
BACKGROUND Catecholamine-O-methyl-tranferase (COMT) initiates dopamine degradation. Its activity is mainly determined by a single nucleotide polymorphism in the COMT gene (Val158Met, rs4680) separating high (Val/Val, COMT(HH)), intermediate (Val/Met, COMT(HL)) and low metabolizers (Met/Met, COMT(LL)). We investigated dopaminergic denervation in the striatum in PD patients according to COMT rs4680 genotype. METHODS Patients with idiopathic PD were assessed for motor severity (UPDRS-III rating scale in OFF-state), dopaminergic denervation using [123I]-FP-CIT SPECT imaging, and genotyped for the COMT rs4680 enzyme. [123I]-FP-CIT binding potential (BP) for each voxel was defined by the ratio of tracer-binding in the region of interest (striatum, caudate nucleus and putamen) to that in a region of non-specific activity. Genotyping was performed using TaqMan(®) SNP genotyping assay. We used a regression model to evaluate the effect of COMT genotype on the BP in the striatum and its sub-regions. RESULTS Genotype distribution was: 11 (27.5%) COMT(HH), 26 (65%) COMT(HL) and 3 (7.5%) COMT(LL). There were no significant differences in disease severity, treatments, or motor scores between genotypes. When adjusted to clinical severity, gender and age, low and intermediate metabolizers showed significantly higher rates of striatal denervation (COMT(HL+LL) BP = 1.32 ± 0.04) than high metabolizers (COMT(HH), BP = 1.6 ± 0.08; F(1.34) = 9.0, p = 0.005). Striatal sub-regions showed similar results. BP and UPDRS-III motor scores (r = 0.44, p = 0.04) (p < 0.001) were highly correlated. There was a gender effect, but no gender-genotype interaction. CONCLUSIONS Striatal denervation differs according to COMT-Val158Met polymorphism. COMT activity may play a role as a compensatory mechanism in PD motor symptoms.
Resumo:
Linkage disequilibrium (LD) is defined as the nonrandom association of alleles at two or more loci in a population and may be a useful tool in a diverse array of applications including disease gene mapping, elucidating the demographic history of populations, and testing hypotheses of human evolution. However, the successful application of LD-based approaches to pertinent genetic questions is hampered by a lack of understanding about the forces that mediate the genome-wide distribution of LD within and between human populations. Delineating the genomic patterns of LD is a complex task that will require interdisciplinary research that transcends traditional scientific boundaries. The research presented in this dissertation is predicated upon the need for interdisciplinary studies and both theoretical and experimental projects were pursued. In the theoretical studies, I have investigated the effect of genotyping errors and SNP identification strategies on estimates of LD. The primary importance of these two chapters is that they provide important insights and guidance for the design of future empirical LD studies. Furthermore, I analyzed the allele frequency distribution of 26,530 single nucleotide polymorphisms (SNPs) in three populations and generated the first-generation natural selection map of the human genome, which will be an important resource for explaining and understanding genomic patterns of LD. Finally, in the experimental study, I describe a novel and simple, low-cost, and high-throughput SNP genotyping method. The theoretical analyses and experimental tools developed in this dissertation will facilitate a more complete understanding of patterns of LD in human populations. ^
Resumo:
SNP genotyping arrays have been developed to characterize single-nucleotide polymorphisms (SNPs) and DNA copy number variations (CNVs). The quality of the inferences about copy number can be affected by many factors including batch effects, DNA sample preparation, signal processing, and analytical approach. Nonparametric and model-based statistical algorithms have been developed to detect CNVs from SNP genotyping data. However, these algorithms lack specificity to detect small CNVs due to the high false positive rate when calling CNVs based on the intensity values. Association tests based on detected CNVs therefore lack power even if the CNVs affecting disease risk are common. In this research, by combining an existing Hidden Markov Model (HMM) and the logistic regression model, a new genome-wide logistic regression algorithm was developed to detect CNV associations with diseases. We showed that the new algorithm is more sensitive and can be more powerful in detecting CNV associations with diseases than an existing popular algorithm, especially when the CNV association signal is weak and a limited number of SNPs are located in the CNV.^
Resumo:
A common single nucleotide polymorphism (SNP) in the 5' untranslated region (5'UTR) of the epidermal growth factor (EGF) gene modulates the level of transcription of this gene and hence is associated with serum levels of EGF. This variant may be associated with melanoma risk, but conflicting findings have been reported. An Australian melanoma case-control sample was typed for the EGF+61A>G transversion (rs4444903). The sample comprised 753 melanoma cases from 738 families stratified by family history of melanoma and 2387 controls from 645 unselected twin families. Ancestry of the cases and controls was recorded, and the twins had undergone skin examination to assess total body nevus count, degree of freckling and pigmentation phenotype. SNP genotyping was carried out via primer extension followed by matrix-assisted laser desorption time of flight (MALDI-TOF) mass spectroscopy. The EGIF+61 SNP was not found to be significantly associated with melanoma status or with development of nevi or freckles. Among melanoma cases, however, G homozygotes had thicker tumors (p=0.05), in keeping with two previous studies. The EGF polymorphism does not appear to predispose to melanoma or nevus development, but its significant association with tumor thickness implies that it may be a useful marker of prognosis.
Resumo:
The first part of the thesis describes a new patterning technique--microfluidic contact printing--that combines several of the desirable aspects of microcontact printing and microfluidic patterning and addresses some of their important limitations through the integration of a track-etched polycarbonate (PCTE) membrane. Using this technique, biomolecules (e.g., peptides, polysaccharides, and proteins) were printed in high fidelity on a receptor modified polyacrylamide hydrogel substrate. The patterns obtained can be controlled through modifications of channel design and secondary programming via selective membrane wetting. The protocols support the printing of multiple reagents without registration steps and fast recycle times. The second part describes a non-enzymatic, isothermal method to discriminate single nucleotide polymorphisms (SNPs). SNP discrimination using alkaline dehybridization has long been neglected because the pH range in which thermodynamic discrimination can be done is quite narrow. We found, however, that SNPs can be discriminated by the kinetic differences exhibited in the dehybridization of PM and MM DNA duplexes in an alkaline solution using fluorescence microscopy. We combined this method with multifunctional encoded hydrogel particle array (fabricated by stop-flow lithography) to achieve fast kinetics and high versatility. This approach may serve as an effective alternative to temperature-based method for analyzing unamplified genomic DNA in point-of-care diagnostic.
Resumo:
Background: Copy number variations (CNVs) have been shown to account for substantial portions of observed genomic variation and have been associated with qualitative and quantitative traits and the onset of disease in a number of species. Information from high-resolution studies to detect, characterize and estimate population-specific variant frequencies will facilitate the incorporation of CNVs in genomic studies to identify genes affecting traits of importance. Results: Genome-wide CNVs were detected in high-density single nucleotide polymorphism (SNP) genotyping data from 1,717 Nelore (Bos indicus) cattle, and in NGS data from eight key ancestral bulls. A total of 68,007 and 12,786 distinct CNVs were observed, respectively. Cross-comparisons of results obtained for the eight resequenced animals revealed that 92 % of the CNVs were observed in both datasets, while 62 % of all detected CNVs were observed to overlap with previously validated cattle copy number variant regions (CNVRs). Observed CNVs were used for obtaining breed-specific CNV frequencies and identification of CNVRs, which were subsequently used for gene annotation. A total of 688 of the detected CNVRs were observed to overlap with 286 non-redundant QTLs associated with important production traits in cattle. All of 34 CNVs previously reported to be associated with milk production traits in Holsteins were also observed in Nelore cattle. Comparisons of estimated frequencies of these CNVs in the two breeds revealed 14, 13, 6 and 14 regions in high (>20 %), low (<20 %) and divergent (NEL > HOL, NEL < HOL) frequencies, respectively. Conclusions: Obtained results significantly enriched the bovine CNV map and enabled the identification of variants that are potentially associated with traits under selection in Nelore cattle, particularly in genome regions harboring QTLs affecting production traits.
Resumo:
Nelore is the major beef cattle breed in Brazil with more than 130 million heads. Genome-wide association studies (GWAS) are often used to associate markers and genomic regions to growth and meat quality traits that can be used to assist selection programs. An alternative methodology to traditional GWAS that involves the construction of gene network interactions, derived from results of several GWAS is the AWM (Association Weight Matrices)/PCIT (Partial Correlation and Information Theory). With the aim of evaluating the genetic architecture of Brazilian Nelore cattle, we used high-density SNP genotyping data (~770,000 SNP) from 780 Nelore animals comprising 34 half-sibling families derived from highly disseminated and unrelated sires from across Brazil. The AWM/PCIT methodology was employed to evaluate the genes that participate in a series of eight phenotypes related to growth and meat quality obtained from this Nelore sample.
Resumo:
Background Illumina's Infinium SNP BeadChips are extensively used in both small and large-scale genetic studies. A fundamental step in any analysis is the processing of raw allele A and allele B intensities from each SNP into genotype calls (AA, AB, BB). Various algorithms which make use of different statistical models are available for this task. We compare four methods (GenCall, Illuminus, GenoSNP and CRLMM) on data where the true genotypes are known in advance and data from a recently published genome-wide association study. Results In general, differences in accuracy are relatively small between the methods evaluated, although CRLMM and GenoSNP were found to consistently outperform GenCall. The performance of Illuminus is heavily dependent on sample size, with lower no call rates and improved accuracy as the number of samples available increases. For X chromosome SNPs, methods with sex-dependent models (Illuminus, CRLMM) perform better than methods which ignore gender information (GenCall, GenoSNP). We observe that CRLMM and GenoSNP are more accurate at calling SNPs with low minor allele frequency than GenCall or Illuminus. The sample quality metrics from each of the four methods were found to have a high level of agreement at flagging samples with unusual signal characteristics. Conclusions CRLMM, GenoSNP and GenCall can be applied with confidence in studies of any size, as their performance was shown to be invariant to the number of samples available. Illuminus on the other hand requires a larger number of samples to achieve comparable levels of accuracy and its use in smaller studies (50 or fewer individuals) is not recommended.
Resumo:
Background A whole-genome genotyping array has previously been developed for Malus using SNP data from 28 Malus genotypes. This array offers the prospect of high throughput genotyping and linkage map development for any given Malus progeny. To test the applicability of the array for mapping in diverse Malus genotypes, we applied the array to the construction of a SNPbased linkage map of an apple rootstock progeny. Results Of the 7,867 Malus SNP markers on the array, 1,823 (23.2 %) were heterozygous in one of the two parents of the progeny, 1,007 (12.8 %) were heterozygous in both parental genotypes, whilst just 2.8 % of the 921 Pyrus SNPs were heterozygous. A linkage map spanning 1,282.2 cM was produced comprising 2,272 SNP markers, 306 SSR markers and the S-locus. The length of the M432 linkage map was increased by 52.7 cM with the addition of the SNP markers, whilst marker density increased from 3.8 cM/marker to 0.5 cM/marker. Just three regions in excess of 10 cM remain where no markers were mapped. We compared the positions of the mapped SNP markers on the M432 map with their predicted positions on the ‘Golden Delicious’ genome sequence. A total of 311 markers (13.7 % of all mapped markers) mapped to positions that conflicted with their predicted positions on the ‘Golden Delicious’ pseudo-chromosomes, indicating the presence of paralogous genomic regions or misassignments of genome sequence contigs during the assembly and anchoring of the genome sequence. Conclusions We incorporated data for the 2,272 SNP markers onto the map of the M432 progeny and have presented the most complete and saturated map of the full 17 linkage groups of M. pumila to date. The data were generated rapidly in a high-throughput semi-automated pipeline, permitting significant savings in time and cost over linkage map construction using microsatellites. The application of the array will permit linkage maps to be developed for QTL analyses in a cost-effective manner, and the identification of SNPs that have been assigned erroneous positions on the ‘Golden Delicious’ reference sequence will assist in the continued improvement of the genome sequence assembly for that variety.