651 resultados para SMOOTHING SPLINE
Resumo:
Nous avons choisi de focaliser nos analyses sur les inégalités sociales de mortalité spécifiquement aux grands âges. Pour ce faire, l'utilisation de l'âge modal au décès combiné à la dispersion des décès au-delà de cet âge s'avère particulièrement adapté pour capter ces disparités puisque ces mesures ne sont pas tributaires de la mortalité prématurée. Ainsi, à partir de la distribution des âges au décès selon le niveau de défavorisation, au Québec au cours des périodes 2000-2002 et 2005-2007, nous avons déterminé l'âge le plus commun au décès et la dispersion des durées de vie au-delà de celui-ci. L'estimation de la distribution des décès selon l'âge et le niveau de défavorisation repose sur une approche non paramétrique de lissage par P-splines développée par Nadine Ouellette dans le cadre de sa thèse de doctorat. Nos résultats montrent que l'âge modal au décès ne permet pas de détecter des disparités dans la mortalité des femmes selon le niveau de défavorisation au Québec en 2000-2002 et en 2005-2007. Néanmoins, on assiste à un report de la mortalité vers des âges plus avancés alors que la compression de la mortalité semble s'être stabilisée. Pour les hommes, les inégalités sociales de mortalité sont particulièrement importantes entre le sous-groupe le plus favorisé et celui l'étant le moins. On constate un déplacement de la durée de vie la plus commune des hommes vers des âges plus élevés et ce, peu importe le niveau de défavorisation. Cependant, contrairement à leurs homologues féminins, le phénomène de compression de la mortalité semble toujours s'opérer.
Resumo:
Our essay aims at studying suitable statistical methods for the clustering of compositional data in situations where observations are constituted by trajectories of compositional data, that is, by sequences of composition measurements along a domain. Observed trajectories are known as “functional data” and several methods have been proposed for their analysis. In particular, methods for clustering functional data, known as Functional Cluster Analysis (FCA), have been applied by practitioners and scientists in many fields. To our knowledge, FCA techniques have not been extended to cope with the problem of clustering compositional data trajectories. In order to extend FCA techniques to the analysis of compositional data, FCA clustering techniques have to be adapted by using a suitable compositional algebra. The present work centres on the following question: given a sample of compositional data trajectories, how can we formulate a segmentation procedure giving homogeneous classes? To address this problem we follow the steps described below. First of all we adapt the well-known spline smoothing techniques in order to cope with the smoothing of compositional data trajectories. In fact, an observed curve can be thought of as the sum of a smooth part plus some noise due to measurement errors. Spline smoothing techniques are used to isolate the smooth part of the trajectory: clustering algorithms are then applied to these smooth curves. The second step consists in building suitable metrics for measuring the dissimilarity between trajectories: we propose a metric that accounts for difference in both shape and level, and a metric accounting for differences in shape only. A simulation study is performed in order to evaluate the proposed methodologies, using both hierarchical and partitional clustering algorithm. The quality of the obtained results is assessed by means of several indices
Resumo:
En este documento se presenta la descripción y los resultados de la estimación de la estructura a plazos de las tasas de interés en Colombia utilizando el método de funciones B-spline cúbicas. Adicionalmente, se llevan a cabo comparaciones entre los resultados obtenidos a través de esta metodología y los presentados por Arango, Melo y Vásquez (2002) respecto a los métodos de Nelson y Siegel, y de la Bolsa de Valores de Colombia. Se observa que el desempeño del método de estimación de funciones Bspline cúbicas es similar al de Nelson y Siegel, y estos dos métodos superan al de la Bolsa de Valores de Colombia.
Resumo:
Molts sistemes mecànics existents tenen un comportament vibratori funcionalment perceptible, que es posa de manifest enfront d'excitacions transitòries. Normalment, les vibracions generades segueixen presents després del transitori (vibracions residuals), i poden provocar efectes negatius en la funció de disseny del mecanisme. El mètode que es proposa en aquesta tesi té com a objectiu principal la síntesi de lleis de moviment per reduir les vibracions residuals. Addicionalment, els senyals generats permeten complir dues condicions definides per l'usuari (anomenats requeriments funcionals). El mètode es fonamenta en la relació existent entre el contingut freqüencial d'un senyal transitori, i la vibració residual generada, segons sigui l'esmorteïment del sistema. Basat en aquesta relació, i aprofitant les propietats de la transformada de Fourier, es proposa la generació de lleis de moviment per convolució temporal de polsos. Aquestes resulten formades per trams concatenats de polinomis algebraics, cosa que facilita la seva implementació en entorns numèrics per mitjà de corbes B-spline.
Resumo:
In this article a simple and effective controller design is introduced for the Hammerstein systems that are identified based on observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a B-spline neural network. The controller is composed by computing the inverse of the B-spline approximated nonlinear static function, and a linear pole assignment controller. The contribution of this article is the inverse of De Boor algorithm that computes the inverse efficiently. Mathematical analysis is provided to prove the convergence of the proposed algorithm. Numerical examples are utilised to demonstrate the efficacy of the proposed approach.
Resumo:
In this brief, a new complex-valued B-spline neural network is introduced in order to model the complex-valued Wiener system using observational input/output data. The complex-valued nonlinear static function in the Wiener system is represented using the tensor product from two univariate B-spline neural networks, using the real and imaginary parts of the system input. Following the use of a simple least squares parameter initialization scheme, the Gauss-Newton algorithm is applied for the parameter estimation, which incorporates the De Boor algorithm, including both the B-spline curve and the first-order derivatives recursion. Numerical examples, including a nonlinear high-power amplifier model in communication systems, are used to demonstrate the efficacy of the proposed approaches.
Resumo:
In this paper a new nonlinear digital baseband predistorter design is introduced based on direct learning, together with a new Wiener system modeling approach for the high power amplifiers (HPA) based on the B-spline neural network. The contribution is twofold. Firstly, by assuming that the nonlinearity in the HPA is mainly dependent on the input signal amplitude the complex valued nonlinear static function is represented by two real valued B-spline neural networks, one for the amplitude distortion and another for the phase shift. The Gauss-Newton algorithm is applied for the parameter estimation, in which the De Boor recursion is employed to calculate both the B-spline curve and the first order derivatives. Secondly, we derive the predistorter algorithm calculating the inverse of the complex valued nonlinear static function according to B-spline neural network based Wiener models. The inverse of the amplitude and phase shift distortion are then computed and compensated using the identified phase shift model. Numerical examples have been employed to demonstrate the efficacy of the proposed approaches.
Resumo:
In this paper we introduce a new Wiener system modeling approach for memory high power amplifiers in communication systems using observational input/output data. By assuming that the nonlinearity in the Wiener model is mainly dependent on the input signal amplitude, the complex valued nonlinear static function is represented by two real valued B-spline curves, one for the amplitude distortion and another for the phase shift, respectively. The Gauss-Newton algorithm is applied for the parameter estimation, which incorporates the De Boor algorithm, including both the B-spline curve and the first order derivatives recursion. An illustrative example is utilized to demonstrate the efficacy of the proposed approach.
Resumo:
In this paper we investigate the commonly used autoregressive filter method of adjusting appraisal-based real estate returns to correct for the perceived biases induced in the appraisal process. Since the early work by Geltner (1989), many papers have been written on this topic but remarkably few have considered the relationship between smoothing at the individual property level and the amount of persistence in the aggregate appraised-based index. To investigate this issue in more detail we analyse a sample of individual property level appraisal data from the Investment Property Database (IPD). We find that commonly used unsmoothing estimates overstate the extent of smoothing that takes place at the individual property level. There is also strong support for an ARFIMA representation of appraisal returns.
Resumo:
There is a substantial literature which suggests that appraisals are smoothed and lag the true level of prices. This study combines a qualitative interview survey of the leading fund manager/owners in the UK and their appraisers with a empirical study of the number of appraisals which change each month within the IPD Monthly Index. The paper concentrates on how the appraisal process operates for commercial property performance measurement purposes. The survey interviews suggest that periodic appraisal services are consolidating in fewer firms and, within these major firms, appraisers adopt different approaches to changing appraisals on a period by period basis, with some wanting hard transaction evidence while others act on "softer' signals. The survey also indicates a seasonal effect with greater effort and information being applied to annual and quarterly appraisals than monthly. The analysis of the appraisals within the Investment Property Databank Monthly Index confirms this effect with around 5% more appraisals being moved at each quarter day than the other months. January and August have significantly less appraisal changes than other months.
Resumo:
A simple and effective algorithm is introduced for the system identification of Wiener system based on the observational input/output data. The B-spline neural network is used to approximate the nonlinear static function in the Wiener system. We incorporate the Gauss-Newton algorithm with De Boor algorithm (both curve and the first order derivatives) for the parameter estimation of the Wiener model, together with the use of a parameter initialization scheme. The efficacy of the proposed approach is demonstrated using an illustrative example.
Resumo:
There is a substantial literature which suggests that appraisals are smoothed and lag the true level of prices. This study combines a qualitative interview survey of the leading fund manager/owners in the UK and their appraisers with a empirical study of the number of appraisals which change each month within the IPD Monthly Index. The paper concentrates on how the appraisal process operates for commercial real estate performance measurement purposes. The survey interviews suggest that periodic appraisal services are consolidating in fewer firms and, within these major firms, appraisers adopt different approaches to changing appraisals on a period by period basis, with some wanting hard transaction evidence while others act on ‘softer’ signals. The survey also indicates a seasonal effect with greater effort and information being applied to annual and quarterly appraisals than monthly. The analysis of the appraisals within the IPD Monthly Index confirms this effect with around 5% more appraisals being moved at each quarter day than the other months. More November appraisals change than expected and this suggests that the increased information flows for the December end year appraisals are flowing through into earlier appraisals, especially as client/appraiser draft appraisal meetings for the December appraisals, a regular occurrence in the UK, can occur in November. January illustrates significantly less activity than other months, a seasonal effect after the exertions of the December appraisals.
Resumo:
In this article, we investigate the commonly used autoregressive filter method of adjusting appraisal-based real estate returns to correct for the perceived biases induced in the appraisal process. Many articles have been written on appraisal smoothing but remarkably few have considered the relationship between smoothing at the individual property level and the amount of persistence in the aggregate appraisal-based index. To investigate this issue we analyze a large sample of appraisal data at the individual property level from the Investment Property Databank. We find that commonly used unsmoothing estimates at the index level overstate the extent of smoothing that takes place at the individual property level. There is also strong support for an ARFIMA representation of appraisal returns at the index level and an ARMA model at the individual property level.
Resumo:
In this paper a new system identification algorithm is introduced for Hammerstein systems based on observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a non-uniform rational B-spline (NURB) neural network. The proposed system identification algorithm for this NURB network based Hammerstein system consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular value decomposition (SVD). Numerical examples including a model based controller are utilized to demonstrate the efficacy of the proposed approach. The controller consists of computing the inverse of the nonlinear static function approximated by NURB network, followed by a linear pole assignment controller.