192 resultados para SLEEPINESS
Resumo:
Daytime sleepiness is a complaint of about 5-10% in a normal population. The consequences, such as impaired performance and accidents at the workplace and while driving, have major impact on the affected and on society. According to Swiss federal statistics only 1-3% of all motor vehicle accidents are due to excessive daytime sleepiness, which is in great contrast to a figure of 10 to 20% of all accidents derived from scientific studies. Due to the inadequate statistical representation of the problem, insufficient countermeasures have been realized, and the state of drivers breaching traffic regulations is not adequately investigated in this respect. The most prevalent cause of microsleep induced accidents is certainly lack of sleep due to social or professional reasons. A treating physician must also consider sedating drugs and various diseases. The typical characteristics of accidents due to falling asleep at the wheel and the risk factors involved are well established, so that informing the general public, taking prophylactic countermeasures and a targeted investigation in this respect of drivers who have breached the law are all feasible. Since symptoms of sleepiness can be recognized well before any impairment of performance occurs, the most important countermeasure is information of the drivers on the risk factors and on efficient countermeasures against sleepiness at the wheel. Besides correct diagnosis and treatment, the primary goal of physicians treating patients with pathological daytime sleepiness is to inform them at an early stage about the risks of sleepiness and the large responsibility they bear while driving. This information should be written down in the patients' records. Professional drivers suffering from daytime sleepiness, drivers who have already had an accident due to microsleep and unreasonable drivers should be referred to a centre of sleep disorders for objective measurements of sleepiness.
Resumo:
To assess frequency and characteristics of excessive daytime sleepiness (EDS) in restless legs syndrome (RLS) and the evolution of EDS under different RLS therapies.
Resumo:
Although extensive indirect evidence exists to suggest that the central dopaminergic system plays a significant role in the modulation of arousal, the functional effect of the dopaminergic influence on the regulation of the sleep-wake cycle remains unclear. Thirteen healthy volunteers and 15 unmedicated subjects with a history of major depressive disorder underwent catecholamine depletion (CD) using oral alpha-methyl-para-tyrosine in a randomized, placebo-controlled, double-blind, crossover study. The main outcome measures in both sessions were sleepiness (Stanford-Sleepiness-Scale), cerebral glucose metabolism (positron emission tomography), and serum prolactin concentration. CD consistently induced clinically relevant sleepiness in both groups. The CD-induced prolactin increase significantly correlated with CD-induced sleepiness but not with CD-induced mood and anxiety symptoms. CD-induced sleepiness correlated with CD-induced increases in metabolism in the medial and orbital frontal cortex, bilateral superior temporal cortex, left insula, cingulate motor area and in the vicinity of the periaqueductal gray. This study suggests that the association between dopamine depletion and sleepiness is independent of the brain reward system and the risk for depression. The visceromotor system, the cingulate motor area, the periaqueductal gray and the caudal hypothalamus may mediate the impact of the dopaminergic system on regulation of wakefulness and sleep.
Resumo:
We aimed to investigate the differential roles of hypocretin versus dopamine dysfunction versus excessive daytime sleepiness (EDS) in the development of hyposmia. Olfaction in patients with Parkinson disease, restless leg syndrome, narcolepsy with cataplexy, EDS, and healthy controls was compared.
Resumo:
Context-Daytime sleepiness in kidney transplant recipients has emerged as a potential predictor of impaired adherence to the immunosuppressive medication regimen. Thus there is a need to assess daytime sleepiness in clinical practice and transplant registries.Objective-To evaluate the validity of a single-item measure of daytime sleepiness integrated in the Swiss Transplant Cohort Study (STCS), using the American Educational Research Association framework.Methods-Using a cross-sectional design, we enrolled a convenience sample of 926 home-dwelling kidney transplant recipients (median age, 59.69 years; 25%-75% quartile [Q25-Q75], 50.27-59.69), 63% men; median time since transplant 9.42 years (Q25-Q75, 4.93-15.85). Daytime sleepiness was assessed by using a single item from the STCS and the 8 items of the validated Epworth Sleepiness Scale. Receiver operating characteristic curve analysis was used to determine the cutoff for the STCS daytime sleepiness item against the Epworth Sleepiness Scale score.Results-Based on the receiver operating characteristic curve analysis, a score greater than 4 on the STCS daytime sleepiness item is recommended to detect daytime sleepiness. Content validity was high as all expert reviews were unanimous. Concurrent validity was moderate (Spearman ϱ, 0.531; P< .001) and convergent validity with depression and poor sleep quality although low, was significant (ϱ, 0.235; P<.001 and ϱ, 0.318, P=.002, respectively). For the group difference validity: kidney transplant recipients with moderate, severe, and extremely severe depressive symptom scores had 3.4, 4.3, and 5.9 times higher odds of having daytime sleepiness, respectively, as compared with recipients without depressive symptoms.Conclusion-The accumulated evidence provided evidence for the validity of the STCS daytime sleepiness item as a simple screening scale for daytime sleepiness.
Resumo:
Objective assessments of subjective complaints such as sleepiness, tiredness or fatigue using sleepiness and vigilance tests aim to identify its causes and to judge the fitness to drive or to work of the affected person. "Vigilance" comprises wakefulness, alertness and attention and is therefore not merely reciprocal to sleepiness. Since it is a complex phenomenon with several dimensions it is unlikely to be appropriately assessed by one single "vigilance test". One important dimension of vigilance discussed here is wakefulness with its counterpart of overt sleep and the whole spectrum of various levels in between. The transit zone between full wakefulness and overt sleep is mainly characterised by the subjective complaint of sleepiness, which cannot be measured directly. Only the consequences of reduced wakefulness such as a shortened sleep latency, slowed cognitive function and prolonged reaction time can be measured objectively. It is, therefore, more promising to combine a battery of subjective and objective tests to answer a specific question in order to achieve the most appropriate description for a given clinical or medicolegal situation. However even then we must keep in mind that many other important aspects of fitness to drive / fitness to work such as neurological, psychiatric and neuropsychological functions including risk taking behaviour are not covered by vigilance tests. A comprehensive, multidisciplinary approach is essential in such situations.
Resumo:
BACKGROUND/AIMS Clinical differentiation between organic hypersomnia and non-organic hypersomnia (NOH) is challenging. We aimed to determine the diagnostic value of sleepiness and performance tests in patients with excessive daytime sleepiness (EDS) of organic and non-organic origin. METHODS We conducted a retrospective comparison of the multiple sleep latency test (MSLT), pupillography, and the Steer Clear performance test in three patient groups complaining of EDS: 19 patients with NOH, 23 patients with narcolepsy (NAR), and 46 patients with mild to moderate obstructive sleep apnoea syndrome (OSAS). RESULTS As required by the inclusion criteria, all patients had Epworth Sleepiness Scale (ESS) scores >10. The mean sleep latency in the MSLT indicated mild objective sleepiness in NOH (8.1 ± 4.0 min) and OSAS (7.2 ± 4.1 min), but more severe sleepiness in NAR (2.5 ± 2.0 min). The difference between NAR and the other two groups was significant; the difference between NOH and OSAS was not. In the Steer Clear performance test, NOH patients performed worst (error rate = 10.4%) followed by NAR (8.0%) and OSAS patients (5.9%; p = 0.008). The difference between OSAS and the other two groups was significant, but not between NOH and NAR. The pupillary unrest index was found to be highest in NAR (11.5) followed by NOH (9.2) and OSAS (7.4; n.s.). CONCLUSION A high error rate in the Steer Clear performance test along with mild sleepiness in an objective sleepiness test (MSLT) in a patient with subjective sleepiness (ESS) is suggestive of NOH. This disproportionately high error rate in NOH may be caused by factors unrelated to sleep pressure, such as anergia, reduced attention and motivation affecting performance, but not conventional sleepiness measurements.
Resumo:
Post-traumatic sleep-wake disturbances are common after acute traumatic brain injury. Increased sleep need per 24 h and excessive daytime sleepiness are among the most prevalent post-traumatic sleep disorders and impair quality of life of trauma patients. Nevertheless, the relation between traumatic brain injury and sleep outcome, but also the link between post-traumatic sleep problems and clinical measures in the acute phase after traumatic brain injury has so far not been addressed in a controlled and prospective approach. We therefore performed a prospective controlled clinical study to examine (i) sleep-wake outcome after traumatic brain injury; and (ii) to screen for clinical and laboratory predictors of poor sleep-wake outcome after acute traumatic brain injury. Forty-two of 60 included patients with first-ever traumatic brain injury were available for follow-up examinations. Six months after trauma, the average sleep need per 24 h as assessed by actigraphy was markedly increased in patients as compared to controls (8.3 ± 1.1 h versus 7.1 ± 0.8 h, P < 0.0001). Objective daytime sleepiness was found in 57% of trauma patients and 19% of healthy subjects, and the average sleep latency in patients was reduced to 8.7 ± 4.6 min (12.1 ± 4.7 min in controls, P = 0.0009). Patients, but not controls, markedly underestimated both excessive sleep need and excessive daytime sleepiness when assessed only by subjective means, emphasizing the unreliability of self-assessment of increased sleep propensity in traumatic brain injury patients. At polysomnography, slow wave sleep after traumatic brain injury was more consolidated. The most important risk factor for developing increased sleep need after traumatic brain injury was the presence of an intracranial haemorrhage. In conclusion, we provide controlled and objective evidence for a direct relation between sleep-wake disturbances and traumatic brain injury, and for clinically significant underestimation of post-traumatic sleep-wake disturbances by trauma patients.
Resumo:
OBJECTIVE To test whether sleep-deprived, healthy subjects who do not always signal spontaneously perceived sleepiness (SPS) before falling asleep during the Maintenance of Wakefulness Test (MWT) would do so in a driving simulator. METHODS Twenty-four healthy subjects (20-26 years old) underwent a MWT for 40 min and a driving simulator test for 1 h, before and after one night of sleep deprivation. Standard electroencephalography, electrooculography, submental electromyography, and face videography were recorded simultaneously to score wakefulness and sleep. Subjects were instructed to signal SPS as soon as they subjectively felt sleepy and to try to stay awake for as long as possible in every test. They were rewarded for both "appropriate" perception of SPS and staying awake for as long as possible. RESULTS After sleep deprivation, seven subjects (29%) did not signal SPS before falling asleep in the MWT, but all subjects signalled SPS before falling asleep in the driving simulator (p <0.004). CONCLUSIONS The previous results of an "inaccurate" SPS in the MWT were confirmed, and a perfect SPS was shown in the driving simulator. It was hypothesised that SPS is more accurate for tasks involving continuous feedback of performance, such as driving, compared to the less active situation of the MWT. Spontaneously perceived sleepiness in the MWT cannot be used to judge sleepiness perception while driving. Further studies are needed to define the accuracy of SPS in working tasks or occupations with minimal or no performance feedback.
Resumo:
Due to extensive clinical and electrophysiological overlaps, the correct diagnosis of disorders with excessive daytime sleepiness is often challenging. The aim of this study was to provide diagnostic measures that help discriminating such disorders, and to identify parameters, which don't. In this single-center study, we retrospectively identified consecutive treatment-naïve patients who suffered from excessive daytime sleepiness, and analyzed clinical and electrophysiological measures in those patients in whom a doubtless final diagnosis could be made. Of 588 patients, 287 reported subjective excessive daytime sleepiness. Obstructive sleep apnea is the only disorder that could be identified by polysomnography alone. The diagnosis of insufficient sleep syndrome relies on actigraphy as patients underestimate their sleep need and the disorder shares several clinical and electrophysiological properties with both narcolepsy type 1 and idiopathic hypersomnia. Sleep stage sequencing on MSLT appears helpful to discriminate between insufficient sleep syndrome and narcolepsy. Sleep inertia is a strong indicator for idiopathic hypersomnia. There are no distinctive electrophysiological findings for the diagnosis of restless legs syndrome. Altogether, EDS disorders are common in neurological sleep laboratories, but usually cannot be diagnosed based on PSG and MSLT findings alone. The diagnostic value of actigraphy recordings can hardly be overestimated.
Resumo:
Sleep-disordered breathing and excessive sleepiness may be more common in commercial vehicle drivers than in the general population. The relative importance of factors causing excessive sleepiness and accidents in this population remains unclear. We measured the prevalence of excessive sleepiness and sleep-disordered breathing and assessed accident risk factors in 2,342 respondents to a questionnaire distributed to a random sample of 3,268 Australian commercial vehicle drivers and another 161 drivers among 244 invited to undergo polysomnography. More than half (59.6%) of drivers had sleep-disordered breathing and 15.8% had obstructive sleep apnea syndrome. Twenty-four percent of drivers had excessive sleepiness. Increasing sleepiness was related to an increased accident risk. The sleepiest 5% of drivers on the Epworth Sleepiness Scale and Functional Outcomes of Sleep Questionnaire had an in-creased risk of an accident (odds ratio [OR] 1.91, p = 0.02 and OR 2.23, p < 0.01, respectively) and multiple accidents (OR 2.67, p < 0.01 and OR 2.39, p = 0.01), adjusted for established risk factors. There was an increased accident risk with narcotic analgesic use (OR 2.40, p < 0.01) and antihistamine use (OR 3.44, p = 0.04). Chronic excessive sleepiness and sleep-disordered breathing are common in Australian commercial vehicle drivers. Accident risk was related to increasing chronic sleepiness and antihistamine and narcotic analgesic use.
Resumo:
Sleepiness is a significant contributor to car crashes and sleepiness related crashes have higher mortality and morbidity than other crashes. Young adult drivers are at particular risk for sleepiness related car crashes. It has been suggested that this is because young adults are typically sleepier than older adults because of chronic sleep loss, and more often drive at times of increased risk of acute sleepiness. This prospective study aimed to determine the relationship between predicted and perceived sleepiness while driving in 47 young-adult drivers over a 4-week period. Sleepiness levels were predicted by a model incorporating known circadian and sleep factors influencing alertness, and compared to subjective ratings of sleepiness during 25 18 driving episodes. Results suggested that young drivers frequently drive while at risk of crashing, at times of predicted sleepiness (>7% of episodes) and at times they felt themselves to be sleepy (>23% of episodes). A significant relationship was found between perceived and predicted estimates of sleepiness. However, the participants nonetheless drove at these times. The results of this study may help preventative programs to specifically target factors leading to increased sleepiness when driving (particularly time of day), and to focus interventions to stop young adults from driving when they feel sleepy. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
There are strong associations between childhood sleep disorders and behavioural, concentration and mood problems. Sleep disorders caused and maintained by behavioural factors (eg, sleep-onset association disorder) are common in young children, and have a significant impact on families. Evaluation should include a medical history, a physical, neurological and developmental examination, a description of any nocturnal events or daytime effects of the child's disturbed sleep, and a good understanding of the family situation and parental management of the child. Management involves recognising the developmental age of the child and the family dynamics, and educating and supporting families in applying behavioural techniques to establish good sleep hygiene. Children with parasomnias (eg, night terrors) also benefit from good sleep hygiene, while those with respiratory or neurological causes of sleep disturbance should be referred for specialist treatment.
Resumo:
INTRODUCTION: Sleepiness is a cardinal symptom in obstructive sleep apnoea (OSA) but most patients have unspecific symptoms. Arterial stiffness, evaluated by pulse wave velocity (PWV), is related to atherosclerosis and cardiovascular (CV) risk. Arterial stiffness was reported to be higher in patients with OSA, improving after treatment with continuous positive airway pressure (CPAP). This study aims to assess whether the same effect occurs in patients with OSA and without sleepiness. METHODS AND ANALYSIS: This observational study assesses the CV effect of CPAP therapy on a cohort of patients with moderate-to-severe OSA; the effect on the subcohorts of sleepy and non-sleepy patients will be compared. A systematic and consecutive sample of patients advised CPAP therapy will be recruited from a single outpatient sleep clinic (Centro Hospitalar de Lisboa Central-CHLC, Portugal). Eligible patients are male, younger than 65 years, with confirmed moderate-to-severe OSA and apnoea-hypopnea index (AHI) above 15/hour. Other sleep disorders, diabetes or any CV disease other than hypertension are exclusion criteria. Clinical evaluation at baseline includes Epworth Sleepiness Scale (ESS), and sleepiness is defined as ESS above 10. OSA will be confirmed by polygraphic study (cardiorespiratory, level 3). Participants are advised to undertake an assessment of carotid-femoral PWV (cf-PWV) and 24 hours evaluation of ambulatory blood pressure monitoring (ABPM), at baseline and after 4 months of CPAP therapy. Compliance and effectiveness of CPAP will be assessed. The main outcome is the variation of cf-PWV over time.
Resumo:
Background: Noise is a significant barrier to sleep for acute care hospital patients, and sleep has been shown to be therapeutic for health, healing and recovery. Scheduled quiet time interventions to promote inpatient rest and sleep have been successfully trialled in critical care but not in acute care settings. Objectives: The study aim was to evaluate as cheduled quiet time intervention in an acute care setting. The study measured the effect of a scheduled quiet time on noise levels, inpatients’ rest and sleep behaviour, and wellbeing. The study also examined the impact of the intervention on patients’, visitors’ and health professionals’ satisfaction, and organisational functioning. Design: The study was a multi-centred non-randomised parallel group trial. Settings: The research was conducted in the acute orthopaedic wards of two major urban public hospitals in Brisbane, Australia. Participants: All patientsadmitted to the two wards in the5-month period of the study were invited to participate, withafinalsample of 299 participants recruited. This sample produced an effect size of 0.89 for an increase in the number of patients asleep during the quiet time. Methods: Demographic data were collected to enable comparison between groups. Data for noise level, sleep status, sleepiness and well being were collected using previously validated instruments: a Castle Model 824 digital sound level indicator; a three point sleep status scale; the Epworth Sleepiness Scale; and the SF12 V2 questionnaire. The staff, patient and visitor surveys on the experimental ward were adapted from published instruments. Results: Significant differences were found between the two groups in mean decibel level and numbers of patients awake and asleep. The difference in mean measured noise levels between the two environments corresponded to a ‘perceived’ difference of 2 to 1. There were significant correlations between average decibel level and number of patients awake and asleep in the experimental group, and between average decibel level and number of patients awake in the control group. Overall, patients, visitors and health professionals were satisfied with the quiet time intervention. Conclusions: The findings show that a quiet time intervention on an acute care hospital ward can affect noise level and patient sleep/wake patterns during the intervention period. The overall strongly positive response from surveys suggests that scheduled quiet time would be a positively perceived intervention with therapeutic benefit.