926 resultados para SIZE CONTROL
Resumo:
Nearly monodisperse Pd nanocubes with controllable sizes were synthesized through a seed-mediated growth approach. By using Pd nanocubes of 22 nm in size as seeds, the morphology of the as-grown nanostructures was fixed as single-crystalline, which enabled us to rationally tune the size of Pd nanocubes. The formation mechanism of initial 22 nm nanocubes was also discussed. The size-dependent surface plasmon resonance properties of the as-synthesized Pd nanocubes were investigated. Compared with previous methods, the yield, monodispersity, perfection of the shape formation, and the range of size control of these nanocubes are all improved.
Resumo:
We reported a simple and effective green chemistry route for facile synthesis of nanowire-like Pt nanostructures atone step. In the reaction, dextran acted as a reductive agent as well as a protective agent for the synthesis of Pt nanostructures. Simple mixing of precursor aqueous solutions of dextran and K2PtCl4 at 80 degrees C could result in spontaneous formation of the Pt nanostructures. Optimization of the experiment condition could yield nanowire-like Pt nanostructures at 23:1 molar ratio of the dextran repeat unit to K2PtCl4.
Resumo:
In this paper, a hollow Au/Pd core/shell nanostructure with a raspberry surface was developed for methanol, ethanol, and formic acid oxidation in alkaline media. The results showed that it possessed better electrocatalyst performance than hollow Au nanospheres or Pd nanoparticles. The nanostructure was fabricated via a two-step method. Hollow Au nanospheres were first synthesized by a galvanic replacement reaction, and then they were coated with a layer of Pd grains. Several characterizations such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) were used to investigate the prepared nanostructures.
Resumo:
In this paper, we demonstrate the self-assembly of ionic liquids (ILs)-stabilized Pt nanoparticles into two-dimensional (2D) patterned nanostructures at the air-water interface under ambient conditions. Here, ILs are not used as solvents but as mediators by virtue of their pronounced self-organization ability in synthesis of self-assembled, highly organized hybrid Pt nanostructures. It is also found that the morphologies of the 2D patterned nanostructures are directly connected with the quantities of ILs. Due to the special structures of ILs-stabilized Pt nanoparticles, 2D patterned Pt nanostructures can be formed through the pi-pi stack interactions and hydrogen bonds. The resulting 2D patterned Pt nanostructures exhibit good electrocatalytic activity toward oxygen reduction.
Resumo:
A solution-phase approach to synthesize four kinds of mixed-valence, transition metal compounds nanotube is described. The approach is based on the self-assembly of siloxane sol. The resulted production of mixed-valence, transition metal compounds share a common structural characteristic of tubular geometrical morphology, at least for the ones we studied. The results demonstrate that the synthesis strategy can be a general route for preparation of compound nanotubes. In addition, the size control of nanotubular materials can be easily achieved through varying the ionic strength of solution. Based on the strategy, the diameters of ultrathin Ru-Fe nanotubes can be easily tuned between 100 nm and 800 nm.
Resumo:
We report the synthesis of hexadecyltrimethylammonium bromide (CTAB)-stabilized cubic Pt nanoparticles by NaBH4 reduction of H2PtCl6 in aqueous CTAB solution. These Pt nanoparticles (average size of 7 nm) were well dispersed in aqueous solution and stable at least for 2 months. Addition of a trace amount of AgNO3 can alter the morphology of these Pt nanoparticles. More interestingly, the as-prepared uniform Pt nanoparticles were further developed into bigger Pt nanoagglomerates (similar to 20 to 47 nm) by a seed-mediate growth process. Dentritic and spherical Pt nanoagglomerates can be synthesized by altering the incubation time and their size can be tuned by controlling the amount of the seeds added.
Resumo:
The block copolymer polystyrene-b-poly[2-(trimethylsilyloxy)ethylene methacrylate] (PSt-b-PTMSEMA) was synthesized using atom-transfer radical polymerization (ATRP). The hydrolysis of PSt-b-PTMSEMA led to the formation of an amphiphilic block copolymer, polystyrene-b-poly(2-hydroxylethyl methacrylate) (PSt-b-PHEMA), which was characterized by GPC and H-1-NMR. TEM showed that the PSt-b-PHEMA formed a micelle, which is PSt as the core and PHEMA as the shell. Under appropriate conditions, the nickel or cobalt ion cause chemical reactions in these micelles and could be reduced easily. ESCA analysis showed that before reduction the metal existed as a hydroxide; after reduction, the metal existed as an oxide, and the metal content of these materials on the surface is more than that on the surface of the copolymer metal ion. XRD analysis showed that the metal existed as a hydroxide before reduction and existed as a metal after reduction.
Resumo:
Cell size control and mitotic timing in Schizosaccharomyces pombe is coupled to the environment through several signal transduction pathways that include stress response, checkpoint and nutritional status impinging on Cdc25 tyrosine phosphatase and Wee1 tyrosine kinase. These in turn regulate Cdc2 (Cdk1) activity and through a double feedback loop, further activates Cdc25 on 12 possible phosphorylation sites as well as inhibiting Wee1. Phosphomutants of the T89 Cdc2 phosphorylation site on Cdc25, one with a glutamate substitution (T89E) which is known to phosphomimetically activate proteins and an alanine substitution (T89A), which is known to block phosphorylation, exhibit a small steady-state cell size (semi-wee phenotype), a known hallmark for aberrant mitotic control. To determine whether the T89 phosphorylation site plays an integral role in mitotic timing, the phosphomutants were subjected to nitrogen shifts to analyze their transient response in the context of nutritional control. Results for both up and downshifts were replicated for the T89E phosphomutant, however, for the T89A phosphomutant, only a nutritional downshift has been completed so far. We found that the steady-state cell size of both phosphomutants was significantly smaller than the wild-type and in the context of nutritional control. Furthermore, the constitutively activated T89E phosphomutant exhibits residual mitotic entry, whereas the wild-type undergoes a complete mitotic suppression with mitotic recovery also occurring earlier than the wild-type. In response to downshifts, both phosphomutants exhibited an identical response to the wild-type. Further characterization of the other Cdc2 phosphorylation sites on Cdc25 are required before conclusions can be drawn, however T89 remains a strong candidate for being important in activating Cdc25.
Resumo:
This paper proposes finite-sample procedures for testing the SURE specification in multi-equation regression models, i.e. whether the disturbances in different equations are contemporaneously uncorrelated or not. We apply the technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] to obtain exact tests based on standard LR and LM zero correlation tests. We also suggest a MC quasi-LR (QLR) test based on feasible generalized least squares (FGLS). We show that the latter statistics are pivotal under the null, which provides the justification for applying MC tests. Furthermore, we extend the exact independence test proposed by Harvey and Phillips (1982) to the multi-equation framework. Specifically, we introduce several induced tests based on a set of simultaneous Harvey/Phillips-type tests and suggest a simulation-based solution to the associated combination problem. The properties of the proposed tests are studied in a Monte Carlo experiment which shows that standard asymptotic tests exhibit important size distortions, while MC tests achieve complete size control and display good power. Moreover, MC-QLR tests performed best in terms of power, a result of interest from the point of view of simulation-based tests. The power of the MC induced tests improves appreciably in comparison to standard Bonferroni tests and, in certain cases, outperforms the likelihood-based MC tests. The tests are applied to data used by Fischer (1993) to analyze the macroeconomic determinants of growth.
Resumo:
A wide range of tests for heteroskedasticity have been proposed in the econometric and statistics literature. Although a few exact homoskedasticity tests are available, the commonly employed procedures are quite generally based on asymptotic approximations which may not provide good size control in finite samples. There has been a number of recent studies that seek to improve the reliability of common heteroskedasticity tests using Edgeworth, Bartlett, jackknife and bootstrap methods. Yet the latter remain approximate. In this paper, we describe a solution to the problem of controlling the size of homoskedasticity tests in linear regression contexts. We study procedures based on the standard test statistics [e.g., the Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley, Breusch-Pagan-Godfrey, White and Szroeter criteria] as well as tests for autoregressive conditional heteroskedasticity (ARCH-type models). We also suggest several extensions of the existing procedures (sup-type of combined test statistics) to allow for unknown breakpoints in the error variance. We exploit the technique of Monte Carlo tests to obtain provably exact p-values, for both the standard and the new tests suggested. We show that the MC test procedure conveniently solves the intractable null distribution problem, in particular those raised by the sup-type and combined test statistics as well as (when relevant) unidentified nuisance parameter problems under the null hypothesis. The method proposed works in exactly the same way with both Gaussian and non-Gaussian disturbance distributions [such as heavy-tailed or stable distributions]. The performance of the procedures is examined by simulation. The Monte Carlo experiments conducted focus on : (1) ARCH, GARCH, and ARCH-in-mean alternatives; (2) the case where the variance increases monotonically with : (i) one exogenous variable, and (ii) the mean of the dependent variable; (3) grouped heteroskedasticity; (4) breaks in variance at unknown points. We find that the proposed tests achieve perfect size control and have good power.
Resumo:
A new approach for the control of the size of particles fabricated using the Electrohydrodynamic Atomization (EHDA) method is being developed. In short, the EHDA process produces solution droplets in a controlled manner, and as the solvent evaporates from the surface of the droplets, polymeric particles are formed. By varying the voltage applied, the size of the droplets can be changed, and consequently, the size of the particles can also be controlled. By using both a nozzle electrode and a ring electrode placed axisymmetrically and slightly above the nozzle electrode, we are able to produce a Single Taylor Cone Single Jet for a wide range of voltages, contrary to just using a single nozzle electrode where the range of permissible voltage for the creation of the Single Taylor Cone Single Jet is usually very small. Phase Doppler Particle Analyzer (PDPA) test results have shown that the droplet size increases with increasing voltage applied. This trend is predicted by the electrohydrodynamic theory of the Single Taylor Cone Single Jet based on a perfect dielectric fluid model. Particles fabricated using different voltages do not show much change in the particles size, and this may be attributed to the solvent evaporation process. Nevertheless, these preliminary results do show that this method has the potential of providing us with a way of fine controlling the particles size using relatively simple method with trends predictable by existing theories.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We suggest a pseudospectral method for solving the three-dimensional time-dependent Gross-Pitaevskii (GP) equation, and use it to study the resonance dynamics of a trapped Bose-Einstein condensate induced by a periodic variation in the atomic scattering length. When the frequency of oscillation of the scattering length is an even multiple of one of the trapping frequencies along the x, y or z direction, the corresponding size of the condensate executes resonant oscillation. Using the concept of the differentiation matrix, the partial-differential GP equation is reduced to a set of coupled ordinary differential equations, which is solved by a fourth-order adaptive step-size control Runge-Kutta method. The pseudospectral method is contrasted with the finite-difference method for the same problem, where the time evolution is performed by the Crank-Nicholson algorithm. The latter method is illustrated to be more suitable for a three-dimensional standing-wave optical-lattice trapping potential.
Resumo:
Synthesis of silver nanoparticles by thermal treatment of a silver-aspartarne complex under inert atmosphere is described. Spherical metallic silver naroparticles with average diameter of 5 +/-2 nm were obtained by thermal treatment of the complex [Ag(C14H17N2O5)] 1/2H(2)O at 185 degrees C. Thermogravimetric and infrared analysis of the product show the occurrence of an ester bond cleavage of the aspartame ligand followed by rearrangement and release of a molecule of formaldehyde (H2CO), which is transformed in two strong reducing molecules, H-2 and CO. For silver reduction, the presence of the formaldehyde molecules seems to be the key process for the metallic nanoparticles fort-nation. The maintenance of the ligand crystalline structure, with the exception of the ester group loss, was noted as essential for nanoparticles formation and size control. The ligand crystalline structure was completely lost at 200 degrees C and particle growth and coalescence were observed above 250 degrees C. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
TEMA: o controle do tamanho da abertura velofaríngea é uma variável importante na caracterização do perfil acústico da fala hipernasal. OBJETIVO: investigar os aspectos espectrais das frequências de F1, F2, F3, formante nasal(FN) e anti-formante, em Hertz, para as vogais [a] e [ã] na presença de aberturas feitas no bulbo de réplicas da prótese de palato de uma paciente com insuficiência velofaríngea. MÉTODO: gravações de produções de quatro palavras (pato/mato e panto/manto) inseridas em frase veículo foram obtidas em cinco condições de funcionamento velofaríngeo: prótese sem aberturas (condição controle: CC), prótese com abertura de 10mm² no bulbo (condição experimental - CE10), com abertura de 20mm² (condição experimental - CE20), com abertura de 30mm² (condição experimental - CE30), e sem prótese (condição experimental aberta - CEA). Cinco fonoaudiólogos julgaram a nasalidade de fala ao vivo, durante a leitura de um texto oral. As gravações foram usadas para análise espectral. RESULTADOS: valores de F1 foram significativamente mais altos para [a] que para [ã] em todas as condições. Valores de F2 para [a] em CE20 e CE30 foram significantemente mais baixos que nas outras condições, aproximando-se dos valores para [ã]. Valores de F3 não foram significativamente diferentes nas diferentes condições. Houve relação entre os achados de FN e anti-formantes e a percepção de nasalidade para as condições CE10 e CE20. CONCLUSÃO: foram observadas mudanças significativas nos valores espectrais estudados de acordo com alterações no tamanho da abertura velofaríngea.