925 resultados para SIMULATED BODY-FLUIDS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper brings together and analyzes recent work based on the interpretation of the electrochemical measurements made on a modified micro-abrasion-corrosion tester used in several research programmes. These programmes investigated the role of abradant size, test solution pH in abrasion-corrosion of biomaterials, the abrasion-corrosion performance of sintered and thermally sprayed tungsten carbide surfaces under downhole drilling environments and the abrasion-corrosion of UNS S32205 duplex stainless steel. Various abrasion tests were conducted under two-body grooving, three-body rolling and mixed grooving-rolling abrasion conditions, with and without abrasives, on cast F75 cobalt-chromium-molybdenum (CoCrMo) alloy in simulated body fluids, 2205 in chloride containing solutions as well as sprayed and sintered tungsten carbide surfaces in simulated downhole fluids. Pre- and post-test inspections based on optical and scanning electron microscopy analysis are used to help interpret the electrochemical response and current noise measurements made in situ during micro-abrasion-corrosion tests. The complex wear and corrosion mechanisms and their dependence on the microstructure and surface composition as a function of the pH, abrasive concentration, size and type are detailed and linked to the electrochemical signals. The electrochemical versus mechanical processes are plotted for different test parameters and this new approach is used to interpret tribo-corrosion test data to give greater insights into different tribo-corrosion systems. Thus new approaches to interpreting in-situ electrochemical responses to surfaces under different abrasive wear rates, different abrasives and liquid environments (pH and NaCl levels) are made. This representation is directly related to the mechano-electrochemical processes on the surface and avoids quantification of numerous synergistic, antagonistic and additive terms associated with repeat experiments. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, a bioactive zirconia-toughened alumina (ZTA) composite was developed for orthopedic applications. This composite was obtained by slip casting of suspension powder mixtures.Biomimetic processes were used to grow a bone-like apatite layer on composite substrates using sodium silicate solution as a nucleating agent and simulated body fluids. The composites, with or without coating, were characterized by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS), and their apparent density was determined by the Archimedes method. The composites obtained by this process possessed the expected stiffness and dimensions and their density values were similar to those of the composite's theoretical density (98.8%TD). The morphology of the hydroxyapatite formed on the composite surface was homogeneous and composed of small globules, characterizing a carbonated hydroxyapatite. The results of the tests indicated that the method employed to produce the composite and its coating was efficient under the conditions of this study. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium and its alloys are widely used as biomaterials due to their mechanical, chemical and biological properties. To enhance the biocompatibility of titanium alloys, various surface treatments have been proposed. In particular, the formation of titanium oxide nanotubes layers has been extensively examined. Among the various materials for implants, calcium phosphates and hydroxyapatite are widely used clinically. In this work, titanium nanotubes were fabricated on the surface of Ti-7.5Mo alloy by anodization. The samples were anodized for 20 V in an electrolyte containing glycerol in combination with ammonium fluoride (NH4F, 0.25%), and the anodization time was 24 h. After being anodized, specimens were heat treated at 450 °C and 600°C for 1 h to crystallize the amorphous TiO2 nanotubes and then treated with NaOH solution to make them bioactive, to induce growth of calcium phosphate in a simulated body fluid. Surface morphology and coating chemistry were obtained respectively using, field-emission scanning electron microscopy (FEG-SEM), AFM and X-ray diffraction (XRD). It was shown that the presence of titanium nanotubes induces the growth of a sodium titanate nanolayer. During the subsequent invitro immersion in a simulated body fluid, the sodium titanate nanolayer induced the nucleation and growth of nano-dimensioned calcium phosphate. It was possible to observe the formation of TiO2 nanotubes on the surface of Ti-7.5Mo. Calcium phosphate coating was greater in the samples with larger nanotube diameter. These findings represent a simple surface treatment for Ti-7.5Mo alloy that has high potential for biomedical applications. © (2013) Trans Tech Publications, Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was the preparation of inorganic mesoporous materials from silica, calcium phosphate and a nonionic surfactant and to evaluate the incorporation and release of different concentrations of osteogenic growth peptide (OGP) for application in bone regeneration. The adsorption and release of the labeled peptide with 5,6-carboxyfluorescein (OGP-CF) from the mesoporous matrix was monitored by fluorescence spectroscopy. The specific surface area was 880 and 484 m2 g- 1 for pure silica (SiO) and silica/apatite (SiCaP), respectively; the area influenced the percentage of incorporation of the peptide. The release of OGP-CF from the materials in simulated body fluid (SBF) was dependent on the composition of the particles, the amount of incorporated peptide and the degradation of the material. The release of 50% of the peptide content occurred at around 4 and 30 h for SiCaP and SiO, respectively. In conclusion, the materials based on SiO and SiCaP showed in vitro bioactivity and degradation; thus, these materials should be considered as alternative biomaterials for bone regeneration. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis was aimed at investigating the physical-chemical properties and the behaviour in physiological environment of two classes of bioceramics: calcium silicate-based dental cements and alumina-based femoral heads for hip joint prostheses. The material characterization was performed using spectroscopic techniques such as that allow to obtain information on the molecular structure of the species and phases present in the analyzed samples. Raman, infrared and fluorescence spectroscopy was principally used. Calcium silicate cements, such as MTA (Mineral Trioxide Aggregate), are hydraulic materials that can set in presence of water: this characteristic makes them suitable for oral surgery and in particular as root-end filling materials. With the aim to improve the properties of commercial MTA cements, several MTA-based experimental formulations have been tested with regard to bioactivity (i.e. apatite forming ability) upon ageing in simulated body fluids. The formation of a bone-like apatite layer may support the integration in bone tissue and represents an essential requirement for osteoconduction and osteoinduction. The spectroscopic studies demonstrated that the experimental materials under study had a good bioactivity and were able to remineralize demineralized dentin. . Bioceramics thanks to their excellent mechanical properties and chemical resistance, are widely used as alternative to polymer (UHMWPE) and metal alloys (Cr-Co) for hip-joint prostesis. In order to investigate the in vivo wear mechanisms of three different generations of commercial bioceramics femoral heads (Biolox®, Biolox® forte, and Biolox® delta), fluorescence and Raman spectroscopy were used to investigate the surface properties and residual stresses of retrieved implants. Spectroscopic results suggested different wear mechanisms in the three sets of retrievals. Since Biolox® delta is a relatively recent material, the Raman results on its retrievals has been reported for the first time allowing to validate the in vitro ageing protocols proposed in the literature to simulate the effects of the in vivo wear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes references.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of the study was to determine the reliability of body mass index based (BMI) cutoff values in diagnosing obesity among Sri Lankan children. Height, weight, waist circumference (WC) and hip circumference (HC) in 282 children were measured. Total body water was determined by deuterium dilution and fat mass (FM) derived using age and gender specific constants. A percentage FM of 30% for girls and 25% for boys were considered as cutoff levels for obesity. Two hundred and eighty two children (M/F: 158/124) were studied and 99 (80%) girls and 72 (45.5%) boys were obese based on % body fat. Eight (6.4%) girls and nine (5.7%) boys were obese based on International Obesity Task Force (IOTF) cutoff values. Percentage FM and WC centile charts were able to diagnose a significant proportion of children as true obese children. The FM and BMI were closely associated in both girls (r = 0.82, p < 0.001) and boys (r = 0.87, p < 0.001). Percentage FM and BMI had a very low but significant association; girls (r = 0.32, p < 0.001) and boys (r = 0.68, p < 0.001). FM had a significant association with WC and HC. BMI based cutoff values had a specificity of 100% but a very low sensitivity, varying between 8% and 23.6%. BMI is a poor indicator of the percentage fat and the commonly used cutoff values were not sensitive to detect cases of childhood obesity in Sri Lankan children.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Os vidros bioativos constituem um material apropriado para o preenchimento de defeitos ósseos, como alternativa a enxertos autólogos, uma vez que, quando expostos a fluidos fisiológicos promovem a formação de uma ligação com o tecido ósseo sob a forma de uma camada de hidroxiapatite carbonatada. No presente trabalho caracterizaram-se vidros bioativos sem conteúdo alcalino, cuja composição incide no sistema binário de diópsido (CaMgSi2O6) e fosfato de tricálcio (3CaO·P2O5), em função da sua molhabilidade, carga superficial, perfil de degradação, carácter bioativo em fluido fisiológico simulado e do seu comportamento in vitro em contacto com células estaminais mesenquimais humanas (hMSCs). A medição do ângulo de contacto inicial de água sobre os vidros demonstrou o carácter hidrofílico dos vidros investigados. A determinação do potencial zeta mostrou que a carga superficial dos vidros é negativa, sendo mais negativa na composição Di-70. O estudo da biodegradação dos vidros, efetuado através da sua imersão em Tris-HCl, permitiu concluir que a perda de peso dos vidros foi reduzida. A caraterização in vitro em meio acelular foi efetuada através da imersão dos vidros numa solução de fluido fisiológico simulado (SBF) e verificou-se que estes possuem capacidade de formar uma camada de hidroxiapatite carbonatada à sua superfície após 7 dias, detetável por XRD, FTIR e SEM/EDS, sugerindo que este conjunto de vidros é potencialmente bioativo, e poderá estimular a proliferação e diferenciação celular. A resposta das hMSCs em cultura aos vidros bioativos foi avaliada em termos de atividade metabólica, morfologia, viabilidade, proliferação e diferenciação osteogénica e conclui-se que os biovidros Di-60 e Di-70 poderão constituir um suporte viável para a proliferação e diferenciação de hMSCs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tissue engineering. Another aim was to understand the structure-property relationships in the investigated bioactive glasses. In this quest, various glass compositions within the Diopside (CaMgSi2O6) – Fluorapatite (Ca5(PO4)3F) – Tricalcium phosphate (3CaO•P2O5) system have been investigated. All the glasses were prepared by melt-quenching technique and characterized by a wide array of complementary characterization techniques. The glass-ceramics were produced by sintering of glass powders compacts followed by a suitable heat treatment to promote the nucleation and crystallization phenomena. Furthermore, selected parent glass compositions were doped with several functional ions and an attempt to understand their effects on the glass structure, sintering ability and on the in vitro bio-degradation and biomineralization behaviours of the glasses was made. The effects of the same variables on the devitrification (nucleation and crystallization) behaviour of glasses to form bioactive glass-ceramics were also investigated. Some of the glasses exhibited high bio-mineralization rates, expressed by the formation of a surface hydroxyapatite layer within 1–12 h of immersion in a simulated body fluid (SBF) solution. All the glasses showed relatively lower degradation rates in comparison to that of 45S5 Bioglass®. Some of the glasses showed very good in vitro behaviour and the glasses co-doped with zinc and strontium showed an in vitro dose dependent behaviour. The as-designed bioactive glasses and glass–ceramic materials are excellent candidates for applications in bone regeneration and for the fabrication of scaffolds for tissue engineering.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A paradigm shift is taking place from using transplanting tissue and synthetic implants to a tissue engineering approach that aims to regenerate damaged tissues by combining cells from the body with highly porous scaffold biomaterials, which act as templates, guiding the growth of new tissue. The central focus of this thesis was to produce porous glass and glass-ceramic scaffolds that exhibits a bioactive and biocompatible behaviour with specific surface reactivity in synthetic physiological fluids and cell-scaffold interactions, enhanced by composition and thermal treatments applied. Understanding the sintering behaviour and the interaction between the densification and crystallization processes of glass powders was essential for assessing the ideal sintering conditions for obtaining a glass scaffolds for tissue engineering applications. Our main goal was to carry out a comprehensive study of the bioactive glass sintering, identifying the powder size and sintering variables effect, for future design of sintered glass scaffolds with competent microstructures. The developed scaffolds prepared by the salt sintering method using a 3CaO.P2O5 - SiO2 - MgO glass system, with additions of Na2O with a salt, NaCl, exhibit high porosity, interconnectivity, pore size distribution and mechanical strength suitable for bone repair applications. The replacement of 6 % MgO by Na2O in the glass network allowed to tailor the dissolution rate and bioactivity of the glass scaffolds. Regarding the biological assessment, the incorporation of sodium to the composition resulted in an inibition cell response for small periods. Nevertheless it was demonstrated that for 21 days the cells response recovered and are similar for both glass compositions. The in vitro behaviour of the glass scaffolds was tested by introducing scaffolds to simulated body fluid for 21 days. Energy-dispersive Xray spectroscopy and SEM analyses proved the existence of CaP crystals for both compositions. Crystallization forming whitlockite was observed to affect the dissolution behaviour in simulated body fluid. By performing different heat treatments, it was possible to control the bioactivity and biocompatability of the glass scaffolds by means of a controlled crystallization. To recover and tune the bioactivity of the glass-ceramic with 82 % crystalline phase, different methods have been applied including functionalization using 3- aminopropyl-triethoxysilane (APTES). The glass ceramic modified surface exhibited an accelerated crystalline hydroxyapatite layer formation upon immersion in SBF after 21 days while the as prepared glass-ceramic had no detected formation of calcium phosphate up to 5 months. A sufficient mechanical support for bone tissue regeneration that biodegrade later at a tailorable rate was achievable with the glass–ceramic scaffold. Considering the biological assessment, scaffolds demonstrated an inductive effect on the proliferation of cells. The cells showed a normal morphology and high growth rate when compared to standard culture plates. This study opens up new possibilities for using 3CaO.P2O5–SiO2–MgO glass to manufacture various structures, while tailoring their bioactivity by controlling the content of the crystalline phase. Additionally, the in vitro behaviour of these structures suggests the high potential of these materials to be used in the field of tissue regeneration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Simulated intestinal fluids (SIFs) used to assay the solubility of orally administered drugs are typically based on a single bile salt; sodium taurocholate (STC). The aim of this study was to develop mimetic intestinal fluids with a closer similarity to physiological fluids than those reported to date by developing a mixed bile salt (MBS) system (STC, sodium glycodeoxycholate, sodium deoxycholate; 60:39:1) with different concentrations of lecithin, the preponderant intestinal phospholipid. Hydrocortisone and progesterone were used as model drugs to evaluate systematically the influence of SIF composition on solubility. Increasing total bile salt concentration from 0 to 30 mM increased hydrocortisone and progesterone solubility by 2- and ∼25-fold, respectively. Accordingly, higher solubilities were measured in the fed-state compared to the fasted-state SIFs. Progesterone showed the greatest increases in solubility in STC and MBS systems (2-7-fold) compared to hydrocortisone (no significant change; P>0.05) as lecithin concentration was increased. Overall, MBS systems gave similar solubility profiles to STC. In conclusion, the addenda of MBS and lecithin were found to be secondary to the influence of BS concentration. These data provide a foundation for the design of more bio-similar media for pivotal decision-guiding assays in drug development and quality control settings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

INTRODUCTION: Regenerative therapies using biomaterials require accurate information on interactions between the implanted material and the human body. To improve the process of bone regeneration it is necessary to obtain a better understanding of the influence of the surfaces on the early stages of osseointegration. This work aims to investigate the dynamic interaction between simulated body fluid (SBF) and titanium surfaces (Ti cp) immediately after their first contact. METHODS: Ti cp samples were passed through physicochemical treatments after immersion in acid solution, alkaline solution and solutions containing TiO2 and Ca2+, to obtain three different surfaces. These were characterized by electron microscopy and free energy estimates. The evaluation of the interaction with SBF was performed by measuring the dynamic contact angles after contacting the surfaces. RESULTS: The effects of SBF wettability were more significant on surfaces according to high energy estimates. A comparative analysis of the three types of surfaces showed that fluid spreading was greater in samples with greater polar components, indicating that the surface nature influences interactions in the early stages of osseointegration. CONCLUSION: The results indicate the influence of polar interactions in the dynamic wettability of the SBF. It is possible that these interactions can also influence cellular viability on surfaces. Based on these results, new experiments are being designed to improve the presented methodology as a tool for the evaluation of biomaterials without the need for in vivo experiments.