946 resultados para SERUM-LIPID LEVELS
Resumo:
Elevated serum ferritin levels may reflect a systemic inflammatory state as well as increased iron storage, both of which may contribute to an unfavorable outcome of chronic hepatitis C (CHC). We therefore performed a comprehensive analysis of the role of serum ferritin and its genetic determinants in the pathogenesis and treatment of CHC. To this end, serum ferritin levels at baseline of therapy with pegylated interferon-alpha and ribavirin or before biopsy were correlated with clinical and histological features of chronic hepatitis C virus (HCV) infection, including necroinflammatory activity (N = 970), fibrosis (N = 980), steatosis (N = 886), and response to treatment (N = 876). The association between high serum ferritin levels (> median) and the endpoints was assessed by logistic regression. Moreover, a candidate gene as well as a genome-wide association study of serum ferritin were performed. We found that serum ferritin ≥ the sex-specific median was one of the strongest pretreatment predictors of treatment failure (univariate P < 0.0001, odds ratio [OR] = 0.45, 95% confidence interval [CI] = 0.34-0.60). This association remained highly significant in a multivariate analysis (P = 0.0002, OR = 0.35, 95% CI = 0.20-0.61), with an OR comparable to that of interleukin (IL)28B genotype. When patients with the unfavorable IL28B genotypes were stratified according to high versus low ferritin levels, SVR rates differed by > 30% in both HCV genotype 1- and genotype 3-infected patients (P < 0.001). Serum ferritin levels were also independently associated with severe liver fibrosis (P < 0.0001, OR = 2.67, 95% CI = 1.68-4.25) and steatosis (P = 0.002, OR = 2.29, 95% CI = 1.35-3.91), but not with necroinflammatory activity (P = 0.3). Genetic variations had only a limited impact on serum ferritin levels. Conclusion: In patients with CHC, elevated serum ferritin levels are independently associated with advanced liver fibrosis, hepatic steatosis, and poor response to interferon-alpha-based therapy.
Resumo:
Purpose of the study: To investigate the impact of ART, HIV viremia and immunosuppression on triglyceride (TG), total cholesterol (TC) and high density lipoprotein cholesterol (HDL-C) levels. Methods: We considered the cross-sectional associations between TG, TC and HDL-C (mmol/l; first available measurement on/after enrolment in the D:A:D study) and use of ART, HIV viral load (VL; copies/ml), and CD4 count (cells/mm3) measured at the same time. TG was log10 transformed to ensure normality. Analyses were performed using linear regression and adjusted for other factors known to impact lipid levels (table footnote). ART and VL status were combined (off ART&VL _100,000, off ART&VL B100,000, on ART&VL B500, on ART&VL _500), current and nadir CD4 count were categorised as B200, 200_349, 350_499 and _500. Summary of results: 44,322/49,734 participants in the D:A:D Study (89.1%) contributed a TG measurement (median; IQR 1.52; 1.00_ 2.45), 45,169 (90.8%) a TC measurement (4.80; 4.00_5.70) and 38,604 (77.6%) a HDL-C measurement (1.12; 0.90_1.40). Most participants were male (74%), of white ethnicity (51%), without AIDS (78%), were not receiving lipid-lowering drugs (4%) and were ART experienced (61%) with 47% previously exposed to PIs, 61% previously exposed to NRTIs and 29% previously exposed to NNRTIs. The median (IQR) age, current CD4 count and CD4 nadir were 38 (36_45) years, 400 (242_590) cells/ml and 240 (100_410) cells/ml respectively. Compared to those on ART with a suppressed VL, all lipids were lower for those off ART (Table); non-suppressive ART was also associated with lower TC and HDL-C levels (no impact on TG). A low current CD4 count was associated with lower lipid levels, whereas a low nadir CD4 count was associated with higher TC and TG levels. Prior AIDS diagnosis was associated with higher TG and TC, but lower HDL-C levels. Conclusion: Although specific drug classes were not considered, lipid levels are considerably higher in those on a suppressive ART regimen. The higher TC/TG and lower HDL-C levels seen among those with low nadir CD4 count and with a prior AIDS diagnosis suggests severe immunosuppression may be associated with dyslipidaemia over the long-term.
Resumo:
BACKGROUND: Associations of serum calcium levels with the metabolic syndrome and other novel cardio-metabolic risk factors not classically included in the metabolic syndrome, such as those involved in oxidative stress, are largely unexplored. We analyzed the association of albumin-corrected serum calcium levels with conventional and non-conventional cardio-metabolic risk factors in a general adult population. METHODOLOGY/PRINCIPAL FINDINGS: The CoLaus study is a population-based study including Caucasians from Lausanne, Switzerland. The metabolic syndrome was defined using the Adult Treatment Panel III criteria. Non-conventional cardio-metabolic risk factors considered included: fat mass, leptin, LDL particle size, apolipoprotein B, fasting insulin, adiponectin, ultrasensitive CRP, serum uric acid, homocysteine, and gamma-glutamyltransferase. We used adjusted standardized multivariable regression to compare the association of each cardio-metabolic risk factor with albumin-corrected serum calcium. We assessed associations of albumin-corrected serum calcium with the cumulative number of non-conventional cardio-metabolic risk factors. We analyzed 4,231 subjects aged 35 to 75 years. Corrected serum calcium increased with both the number of the metabolic syndrome components and the number of non-conventional cardio-metabolic risk factors, independently of the metabolic syndrome and BMI. Among conventional and non-conventional cardio-metabolic risk factors, the strongest positive associations were found for factors related to oxidative stress (uric acid, homocysteine and gamma-glutamyltransferase). Adiponectin had the strongest negative association with corrected serum calcium. CONCLUSIONS/SIGNIFICANCE: Serum calcium was associated with the metabolic syndrome and with non-conventional cardio-metabolic risk factors independently of the metabolic syndrome. Associations with uric acid, homocysteine and gamma-glutamyltransferase were the strongest. These novel findings suggest that serum calcium levels may be associated with cardiovascular risk via oxidative stress.
Resumo:
OBJECTIVE: Prior to the implementation of the blood steroidal module of the Athlete Biological Passport, we measured the serum androgen levels among a large population of high-level female athletes as well as the prevalence of biochemical hyperandrogenism and some disorders of sex development (DSD). METHODS AND RESULTS: In 849 elite female athletes, serum T, dehydroepiandrosterone sulphate, androstenedione, SHBG, and gonadotrophins were measured by liquid chromatography-mass spectrometry high resolution or immunoassay. Free T was calculated. The sampling hour, age, and type of athletic event only had a small influence on T concentration, whereas ethnicity had not. Among the 85.5% that did not use oral contraceptives, 168 of 717 athletes were oligo- or amenorrhoic. The oral contraceptive users showed the lowest serum androgen and gonadotrophin and the highest SHBG concentrations. After having removed five doped athletes and five DSD women from our population, median T and free T values were close to those reported in sedentary young women. The 99th percentile for T concentration was calculated at 3.08 nmol/L, which is below the 10 nmol/L threshold used for competition eligibility of hyperandrogenic women with normal androgen sensitivity. Prevalence of hyperandrogenic 46 XY DSD in our athletic population is approximately 7 per 1000, which is 140 times higher than expected in the general population. CONCLUSION: This is the first study to establish normative serum androgens values in elite female athletes, while taking into account the possible influence of menstrual status, oral contraceptive use, type of athletic event, and ethnicity. These findings should help to develop the blood steroidal module of the Athlete Biological Passport and to refine more evidence-based fair policies and recommendations concerning hyperandrogenism in female athletes.
Resumo:
Proteins secreted from adipose tissue are increasingly recognized to play an important role in the regulation of glucose metabolism. However, much less is known about their effect on lipid metabolism. The fasting-induced adipose factor (FIAF/angiopoietin-like protein 4/peroxisome proliferator-activated receptor gamma angiopoietin-related protein) was previously identified as a target of hypolipidemic fibrate drugs and insulin-sensitizing thiazolidinediones. Using transgenic mice that mildly overexpress FIAF in peripheral tissues we show that FIAF is an extremely powerful regulator of lipid metabolism and adiposity. FIAF overexpression caused a 50% reduction in adipose tissue weight, partly by stimulating fatty acid oxidation and uncoupling in fat. In addition, FIAF overexpression increased plasma levels of triglycerides, free fatty acids, glycerol, total cholesterol, and high density lipoprotein (HDL)-cholesterol. Functional tests indicated that FIAF overexpression severely impaired plasma triglyceride clearance but had no effect on very low density lipoprotein production. The effects of FIAF overexpression were amplified by a high fat diet, resulting in markedly elevated plasma and liver triglycerides, plasma free fatty acids, and plasma glycerol levels, and impaired glucose tolerance in FIAF transgenic mice fed a high fat diet. Remarkably, in mice the full-length form of FIAF was physically associated with HDL, whereas truncated FIAF was associated with low density lipoprotein. In human both full-length and truncated FIAF were associated with HDL. The composite data suggest that via physical association with plasma lipoproteins, FIAF acts as a powerful signal from fat and other tissues to prevent fat storage and stimulate fat mobilization. Our data indicate that disturbances in FIAF signaling might be involved in dyslipidemia.
Resumo:
Elevated levels of γ-glutamyltransferase (GGT) have been associated with elevated blood pressure (BP) and diabetes. However, the causality of these relations has not been addressed. The authors performed a cross-sectional analysis (2003-2006) among 4,360 participants from the population-based Cohorte Lausannoise (CoLaus) Study (Lausanne, Switzerland). The rs2017869 variant of the γ-glutamyltransferase 1 (GGT1) gene, which explained 1.6% of the variance in GGT levels, was used as an instrument for Mendelian randomization (MR). Sex-specific GGT quartiles were strongly associated with both systolic and diastolic BP (all P's < 0.0001). After multivariable adjustment, these relations were attenuated but remained significant. Using MR, the authors observed no positive association of GGT with BP (systolic: β -5.68, 95% confidence interval (CI): -11.51, 0.16 (P = 0.06); diastolic: β = -2.24, 95% CI: -5.98, 1.49 (P = 0.24)). The association of GGT with insulin was also attenuated after multivariable adjustment but persisted in the fully adjusted model (β = 0.07, 95% CI: 0.04, 0.09; P < 0.0001). Using MR, the authors also observed a positive association of GGT with insulin (β = 0.19, 95% CI: 0.01, 0.37; P = 0.04). In conclusion, the authors found evidence for a direct causal relation of GGT with fasting insulin but not with BP.
Resumo:
OBJECTIVE: Genetic studies might provide new insights into the biological mechanisms underlying lipid metabolism and risk of CAD. We therefore conducted a genome-wide association study to identify novel genetic determinants of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides. METHODS AND RESULTS: We combined genome-wide association data from 8 studies, comprising up to 17 723 participants with information on circulating lipid concentrations. We did independent replication studies in up to 37 774 participants from 8 populations and also in a population of Indian Asian descent. We also assessed the association between single-nucleotide polymorphisms (SNPs) at lipid loci and risk of CAD in up to 9 633 cases and 38 684 controls. We identified 4 novel genetic loci that showed reproducible associations with lipids (probability values, 1.6×10(-8) to 3.1×10(-10)). These include a potentially functional SNP in the SLC39A8 gene for HDL-C, an SNP near the MYLIP/GMPR and PPP1R3B genes for LDL-C, and at the AFF1 gene for triglycerides. SNPs showing strong statistical association with 1 or more lipid traits at the CELSR2, APOB, APOE-C1-C4-C2 cluster, LPL, ZNF259-APOA5-A4-C3-A1 cluster and TRIB1 loci were also associated with CAD risk (probability values, 1.1×10(-3) to 1.2×10(-9)). CONCLUSIONS: We have identified 4 novel loci associated with circulating lipids. We also show that in addition to those that are largely associated with LDL-C, genetic loci mainly associated with circulating triglycerides and HDL-C are also associated with risk of CAD. These findings potentially provide new insights into the biological mechanisms underlying lipid metabolism and CAD risk.
Resumo:
Genetic variants influence the risk to develop certain diseases or give rise to differences in drug response. Recent progresses in cost-effective, high-throughput genome-wide techniques, such as microarrays measuring Single Nucleotide Polymorphisms (SNPs), have facilitated genotyping of large clinical and population cohorts. Combining the massive genotypic data with measurements of phenotypic traits allows for the determination of genetic differences that explain, at least in part, the phenotypic variations within a population. So far, models combining the most significant variants can only explain a small fraction of the variance, indicating the limitations of current models. In particular, researchers have only begun to address the possibility of interactions between genotypes and the environment. Elucidating the contributions of such interactions is a difficult task because of the large number of genetic as well as possible environmental factors.In this thesis, I worked on several projects within this context. My first and main project was the identification of possible SNP-environment interactions, where the phenotypes were serum lipid levels of patients from the Swiss HIV Cohort Study (SHCS) treated with antiretroviral therapy. Here the genotypes consisted of a limited set of SNPs in candidate genes relevant for lipid transport and metabolism. The environmental variables were the specific combinations of drugs given to each patient over the treatment period. My work explored bioinformatic and statistical approaches to relate patients' lipid responses to these SNPs, drugs and, importantly, their interactions. The goal of this project was to improve our understanding and to explore the possibility of predicting dyslipidemia, a well-known adverse drug reaction of antiretroviral therapy. Specifically, I quantified how much of the variance in lipid profiles could be explained by the host genetic variants, the administered drugs and SNP-drug interactions and assessed the predictive power of these features on lipid responses. Using cross-validation stratified by patients, we could not validate our hypothesis that models that select a subset of SNP-drug interactions in a principled way have better predictive power than the control models using "random" subsets. Nevertheless, all models tested containing SNP and/or drug terms, exhibited significant predictive power (as compared to a random predictor) and explained a sizable proportion of variance, in the patient stratified cross-validation context. Importantly, the model containing stepwise selected SNP terms showed higher capacity to predict triglyceride levels than a model containing randomly selected SNPs. Dyslipidemia is a complex trait for which many factors remain to be discovered, thus missing from the data, and possibly explaining the limitations of our analysis. In particular, the interactions of drugs with SNPs selected from the set of candidate genes likely have small effect sizes which we were unable to detect in a sample of the present size (<800 patients).In the second part of my thesis, I performed genome-wide association studies within the Cohorte Lausannoise (CoLaus). I have been involved in several international projects to identify SNPs that are associated with various traits, such as serum calcium, body mass index, two-hour glucose levels, as well as metabolic syndrome and its components. These phenotypes are all related to major human health issues, such as cardiovascular disease. I applied statistical methods to detect new variants associated with these phenotypes, contributing to the identification of new genetic loci that may lead to new insights into the genetic basis of these traits. This kind of research will lead to a better understanding of the mechanisms underlying these pathologies, a better evaluation of disease risk, the identification of new therapeutic leads and may ultimately lead to the realization of "personalized" medicine.
Resumo:
We tested for interactions between body mass index (BMI) and common genetic variants affecting serum urate levels, genome-wide, in up to 42569 participants. Both stratified genome-wide association (GWAS) analyses, in lean, overweight and obese individuals, and regression-type analyses in a non BMI-stratified overall sample were performed. The former did not uncover any novel locus with a major main effect, but supported modulation of effects for some known and potentially new urate loci. The latter highlighted a SNP at RBFOX3 reaching genome-wide significant level (effect size 0.014, 95% CI 0.008-0.02, Pinter= 2.6 x 10-8). Two top loci in interaction term analyses, RBFOX3 and ERO1LB-EDARADD, also displayed suggestive differences in main effect size between the lean and obese strata. All top ranking loci for urate effect differences between BMI categories were novel and most had small magnitude but opposite direction effects between strata. They include the locus RBMS1-TANK (men, Pdifflean-overweight= 4.7 x 10-8), a region that has been associated with several obesity related traits, and TSPYL5 (men, Pdifflean-overweight= 9.1 x 10-8), regulating adipocytes-produced estradiol. The top-ranking known urate loci was ABCG2, the strongest known gout risk locus, with an effect halved in obese compared to lean men (Pdifflean-obese= 2 x 10-4). Finally, pathway analysis suggested a role for N-glycan biosynthesis as a prominent urate-associated pathway in the lean stratum. These results illustrate a potentially powerful way to monitor changes occurring in obesogenic environment.
Resumo:
This study is part of the STRIP study, which is a long-term, randomized controlled trial, designed to decrease the exposure of children in the intervention group (n=540) to known risk factors of atherosclerosis. The main focus of the intervention was the quality of dietary fat. The control group (n=522) did not receive any individualized counselling. Food consumption was evaluated with food records, and blood samples were drawn and growth was measured regularly for all participating children from 13 months to 9 years. A subsample of 66 children participated in a dental health survey. The number of studies on children’s carbohydrate intake, especially fibre intake, is insufficient. The current international recommendations for fibre intake in children are based on average assumptions and data extrapolated from intakes in adults and intake recommendations for adults. Finnish nutrition recommendations lack strict recommendations for dietary fibre in children. Due to fibre’s high bulk volume, excessive dietary fibre is considered to decrease energy density and hence it may have an adverse effect on growth. If fats are reduced from the diet, the low-fat diet may become high in sucrose. Therefore, especially in the STRIP study, it is important to determine the use of fibre and sucrose in children and possible associations with growth and nutrition as well as dental health. The results of the present study indicate that a high fibre intake does not displace energy or disturb growth in children and that children with high fibre intake have better quality of diet than those with low fibre intake. Additionally, dietary fibre intake associated inversely with serum cholesterol concentration. Other carbohydrates also affected serum lipid levels as well, since total carbohydrates, sucrose, and fructose increased serum triglyceride concentration. Total carbohydrate intake reduced HDL cholesterol concentration only in children with apoE3 or apoE4 phenotype. Over the period from the 1970s to the 1990s the dental health of children in Finland has substantially improved despite an increase in sucrose intake. The improvement was thought to be due to improved dental hygiene and the use of fluorine. However, during the past twenty years improvement in dental health has stopped. The present study showed that high long-term sugar intake increases risk of caries in children. High intake of sugar had also negative effects on the diet of children, because it worsens dietary quality by displacing essential nutrients. Furthermore, the quality of dietary fat was worse in children with high sucrose intake. In this study the children’s high sucrose intake was not associated with overweight, but interestingly, it associated inversely with growth.
Resumo:
PURPOSE: To compare salivary and serum cortisol levels, salivary alpha-amylase (sAA), and unstimulated whole saliva (UWS) flow rate in pregnant and non-pregnant women. METHOD: A longitudinal study was conducted at a health promotion center of a university hospital. Nine pregnant and 12 non-pregnant women participated in the study. Serum and UWS were collected and analyzed every trimester and twice a month during the menstrual cycle. The salivary and serum cortisol levels were determined by chemiluminescence assay and the sAA was processed in an automated biochemistry analyzer. RESULTS: Significant differences between the pregnant and non-pregnant groups were found in median [interquartile range] levels of serum cortisol (23.8 µL/dL [19.4-29.4] versus 12.3 [9.6-16.8], p<0.001) and sAA (56.7 U/L [30.9-82.2] versus 31.8 [18.1-53.2], p<0.001). Differences in salivary and serum cortisol (µL/dL) and sAA levels in the follicular versus luteal phase were observed (p<0.001). Median UWS flow rates were similar in pregnant (0.26 [0.15-0.30] mL/min) and non-pregnant subjects (0.23 [0.20-0.32] mL/min). Significant correlations were found between salivary and serum cortisol (p=0.02) and between salivary cortisol and sAA (p=0.01). CONCLUSIONS: Serum cortisol and sAA levels are increased during pregnancy. During the luteal phase of the ovarian cycle, salivary cortisol levels increase, whereas serum cortisol and sAA levels decline.
Resumo:
The present study was designed to assess the effects of bromocriptine, a dopamine agonist, on pituitary wet weight, number of immunoreactive prolactin cells and serum prolactin concentrations in estradiol-treated rats. Ovariectomized Wistar rats were injected subcutaneously with sunflower oil vehicle or estradiol valerate (50 or 300 µg rat-1 week-1) for 2, 4 or 10 weeks. Bromocriptine (0.2 or 0.6 mg rat-1 day-1) was injected daily during the last 5 or 12 days of estrogen treatment. Data were compared with those obtained for intact control rats. Administration of both doses of estrogen increased serum prolactin levels. No difference in the number of prolactin cells in rats treated with 50 µg estradiol valerate was observed compared to intact adult animals. In contrast, rats treated with 300 µg estradiol valerate showed a significant increase in the number of prolactin cells (P<0.05). Therefore, the increase in serum prolactin levels observed in rats treated with 50 µg estradiol valerate, in the absence of morphological changes in the pituitary cells, suggests a "functional" estrogen-induced hyperprolactinemia. Bromocriptine decreased prolactin levels in all estrogen-treated rats. The administration of this drug to rats previously treated with 300 µg estradiol valerate also resulted in a significant decrease in pituitary weight and number of prolactin cells when compared to the group treated with estradiol alone. The general antiprolactinemic and antiproliferative pituitary effects of bromocriptine treatment reported here validate the experimental model of estrogen-induced hyperprolactinemic rats
Resumo:
The pathogenesis of protracted diarrhea is multifactorial. In developing countries, intestinal infectious processes seem to play an important role in triggering the syndrome. Thirty-four children aged 1 to 14 months, mean 6.5 months, with protracted diarrhea were studied clinically and in terms of small intestinal mucosal morphology. Mild, moderate or severe hypotrophy of the jejunal mucosa was detected in 82% of cases, and mucosal atrophy was observed in 12%. The intensity of the morphological changes of the jejunal mucosa correlated negatively with serum albumin levels. No correlation was detected between mucosal grading and duration of diarrhea or between mucosal grading and weight reported as percentile. After nutritional support was instituted, serial jejunal biopsies were obtained from 12 patients: five patients submitted to parenteral nutrition for 7 to 38 days, mean 17 days, and 7 patients receiving a hypoallergenic oral diet (semi-elemental formula, 3; chicken formula, 3; human milk, 1). In seven cases (58%) a progressive increase in villus height and a decrease in the number of inflammatory cells were noted. Recovery of the morphologic pattern was accompanied by clinical improvement in all patients
Resumo:
Many clinical and epidemiological studies have demonstrated the relationship between serum ferritin and ischemic heart disease. In the present study we evaluated the relationship between coronary heart disease (CHD) and serum ferritin levels in patients submitted to coronary arteriography. We evaluated 307 patients (210 (68.7%) males; median age: 60 years) who were submitted to coronary angiography, measurement of serum ferritin and identification of clinical events of ischemic heart disease. Serum ferritin is reported as quartiles. Ninety-six patients (31.27%) had normal coronary angiography (group 1) and 211 (68.73%) had coronary heart disease (group 2). Of the patients with CHD, 61 (28.9%) had serum ferritin levels higher than 194 ng/ml (4th quartile), as opposed to only 14 (14.58%) of those without CHD (P = 0.0067). In the 2nd quartile, 39 patients (18.48%) had CHD, while 35 patients (36.46%) had normal coronary arteries (P = 0.00064). Multivariate analysis of the data showed that the difference between groups was not statistically significant (P = 0.33). We conclude that there is no independent relationship between coronary heart disease and increased levels of serum ferritin.