1000 resultados para SEPTAL AREA
Resumo:
In the present study, we investigated the effect of previous injection of either prazosin (alpha 1-adrenergic antagonist) or atropine (muscarinic cholinergic antagonist) into the medial septal area (MSA) on the presser and dipsogenic responses induced by intracerebroventricular (ICV) injection of carbachol (cholinergic agonist) and angiotensin II (ANGII) in rats. The presser and dipsogenic responses to ICV carbachol (7 nmol) were reduced after previous treatment of the MSA with atropine (0.5 to 5 nmol), but not prazosin (20 and 40 nmol). The dipsogenic response to ICV ANGII (25 ng) was reduced after prazosin (40 nmol) into the MSA. The presser response to ICV ANGII was not changed either by previous treatment of the MSA with prazosin or atropine. The present results suggest a dissociation among the pathways subserving the control of dipsogenic and presser responses to central cholinergic or angiotensinergic activation.
Resumo:
The central injection of clonidine (an alpha-2-adrenoceptor agonist) in conscious normotensive rats produces hypertensive responses and bradycardia. The present study was performed to investigate the effect of electrolytic lesions of the lateral hypothalamus (LH) on the pressor and bradycardic responses induced by clonidine injected into the medial septal area (MSA) in conscious and unrestrained rats. Male Holtzman rats weighing 250-300 g were used. Mean arterial pressure and heart rate were recorded in sham- or bilateral LH-lesioned rats with a cerebral stainless steel cannula implanted into the MSA. The injection of clonidine (40 nmol/mu-l) into the MSA of sham rats (N = 8) produced a pressor response (36 +/- 7 mmHg, P<0.05) and bradycardia (-70 +/- 13 bpm, P<0.05) compared to saline. Fourteen days after LH-lesion (N = 9) the pressor response was reduced (9 +/- 10 mmHg, P<0.05) but no change was observed in the bradycardia (-107 +/- 24 bpm). These results show that LH is an important area involved in the pressor response to clonidine injected into the MSA of rats.
Resumo:
In the present study we investigated the effect of anteroventral third ventricle (AV3V) lesion on pressor, dipsogenic, natriuretic and kaliuretic responses induced by the injection of carbachol (a cholinergic agonist) into the medial septal area (MSA) of rats. Male rats with sham or AV3V lesion and a stainless-steel cannula implanted into the MSA were used. Carbachol (2 nmol) injected into the MSA in sham lesion rats produced pressor (43 +/- 2 mmHg), dipsogenic (9.6 +/- 1.2 ml/h), natriuretic (531 +/- 82-mu-Eq/120 min) and kaliuretic (164 +/- 14-mu-Eq/120 min) responses. In AV3V-lesioned rats (1-5 days and 14-18 days), the pressor (11 +/- 2 mmHg, respectively), dipsogenic (1.9 +/- 0.7 and 1.4 +/- 0.6 ml/h), natriuretic (21 +/- 5 and 159 +/- 44-mu-Eq/120 min) and kaliuretic (124 +/- 14 and 86 +/- 13-mu-Eq/120 min) responses induced by carbachol injection into the MSA were reduced. These results show that the AV3V region is essential for the pressor, dipsogenic, natriuretic and kaliuretic responses induced by cholinergic activation of the MSA in rats.
Resumo:
We investigated the participation of the beta-adrenoceptors of the septal area (SA) in sodium and potassium excretion and urine flow. The alterations in arterial pressure and some renal functions were also investigated. The injection of 2.10(-9) to 16.10(-9)M of isoproterenol, through a cannula permanently implanted into the SA produced a significant dose-dependent decrease in urinary Na+ and K+ excretion and urinary flow. Pretreatment with 16.10(-9) M butoxamine antagonized the effect of 4.10(-9) M isoproterenol but pretreatment with 16.10(-9) M practolol did not abolish the effect of isoproterenol. The beta 2-agonist terbutaline and salbutamol (4.10(-9) M when injected intraseptally also caused a decrease in urine flow and in renal Na+ and K+ excretion. After injection of isoproterenol or salbutamol (4.10(-9) M) into the SA, the arterial pressure, glomerular, filtration rate (GFR) and filtered Nd were reduced while Na+ fractional reabsorption was increased. The results indicate that the beta 2-adrenoceptors of the SA play a role in the decrease of Na+, K+ and urine flow and this effect may be due to a drop in GFR and filtered Na+ and to the rise in tubular Na+ reabsorption.
Resumo:
We studied the effect of the alpha(1)- and alpha(2)-adrenergic receptors of the lateral hypothalamus (LH) on the control of water intake induced by injection of carbachol into the medial septal area (MSA) of adult male Holtzman rats (250-300 g) implanted with chronic stainless steel cannulae into the LH and MSA. The volume of injection was always 1 mu l and was injected over a period of 30-60 s. For control, 0.15 M NaCl was used. Clonidine (20 nmol) but not phenylephrine (160 nmol) injected into the LH inhibited water intake induced by injection of carbachol (2 nmol) into the MSA, from 5.4 +/- 1.2 ml/h to 0.3 +/- 0.1 and 3.0 +/- 0.9 ml/h, respectively (N = 26). When we injected yohimbine (80 nmol) + clonidine (20 nmol) and prazosin (40 nmol) + clonidine (20 nmol) into theLH, water intake induced by injection of carbachol into the MSA was inhibited from 5.4 +/- 1.2 ml/h to 0.8 +/- 0.5 and 0.3 +/- 0.2 ml/h, respectively (N = 19). Water intake induced by carbachol (2 nmol) injected into the MSA was decreased by previous injection of yohimbine (80 nmol) + phenylephrine (160 nmol) and prazosin (40 nmol) + phenylephrine (l60 nmol) from 5.4 +/- 1.2 ml/h to 1.0 +/- 0.7 and 1.8 +/- 0.8 ml/h, respectively (N = 16). The cannula reached both the medial septal area in its medial portion and the lateral hypothalamus. It has been suggested that the different pathways for induction of drinking converge on a final common pathway. Thus, adrenergic stimulation of alpha(2),-adrenoceptors ofLH can influence this final common pathway.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the present study we investigated the effect of electrolytic lesion of the medial septal area (MSA) on the dipsogenic, natriuretic, kaliuretic and pressor responses elicited by intracerebroventricular (i.c.v.) injection of the cholinergic agonist carbachol. Freely moving rats with sham or MSA lesion (1-7 days and 14-18 days) and a stainless steel cannula implanted into the lateral ventricle were studied. In sham rats, i.c.v. injection of carbachol (7.5 nmol) produced an increase in water intake (10.2 ± 1.5 ml/h), mean arterial pressure (MAP) (35 ± 5 mmHg) and urinary Na+ and K+ excretion (551 ± 83 and 170 ± 17 μEq 120 min, resp.). The pressor (18 ± 3 and 14 ± 4 mmHg, resp.) and natriuretic responses (178 ± 58 and 172 ± 38 μEq 120 min) produced by i.c.v. carbachol in acute or chronic MSA-lesioned rats were reduced. No change was observed in urinary K+ excretion and a reduced water intake (5 ± 1.3 ml/h) was observed only in acute MSA-lesioned rats. These results suggest that the MSA plays an important role for the pressor and natriuretic responses induced by central cholinergic activation in rats. A small influence of this structure on water intake may also be suggested. © 1991.
Resumo:
The present study investigates the participation and interaction between cholinergic and opiate receptors of the medial septal area (MSA) in the regulation of Na+, K+ and water excretion, drinking and blood pressure regulation. Male Holtzman rats were implanted with stainless steel cannulae opening into the MSA. Na+, K+ and water excretion, water intake and blood pressure were measured after injection of carbachol (cholinergic agonist), FK-33824 (an opiate agonist) + carbachol or naloxone (an opiate antagonist) + carbachol into MSA. Carbachol (0.5 or 2.0 nmol) induced an increase in Na+ and K+ excretion, water intake and blood pressure and reduced the urinary volume. FK-33824 reduced the urinary volume and Na+ and K+ excretion. Previous injection of FK-33824 (100 ng) into the MSA blocked the increases in Na+ and K+ excretion, water intake and blood pressure induced by carbachol. Naloxone (10 μg) produced no changes in the effect of 2.0 nmol carbachol, but potentiated the natriuretic effect induced by 0.5 nmol dose of carbachol. These data show an inhibitory effect of opiate receptors on the changes in cardiovascular, fluid and electrolyte balance induced by cholinergic stimulation of the MSA in rats. © 1992.
Resumo:
Objective - We determined the effects of losartan and PD 123319 (antagonists of the AT1 and AT2 angiotensin receptors, respectively), and [Sar1, Ala8] ANG II (a relatively peptide antagonist of angiotensin receptors) injected into the paraventricular nucleus (PVN) on water and 3% NaCl intake, and the diuretic, natriuretic, and pressor effects induced by administration of angiotensin II (ANG II) into the medial septal area (MSA) of conscious rats. Methods - Holtzman rats were used. Animals were anesthetized with tribromoethanol (20 mg) per 100 grams of body weight, ip. A stainless steel guide cannula was implanted into the MSA and PVN. All drugs were injected in 0.5-μl volumes for 10-15 seconds. Seven days after brain surgery, water and 3% NaCl intake, urine and sodium excretion, and arterial blood pressure were measured. Results - Losartan (40 nmol) and [Sar1, Ala8] ANG II (40 nmol) completely eliminated whereas PD 123319 (40 nmol) partially blocked the increase in water and sodium intake and the increase in arterial blood pressure induced by ANG II (10 nmol) injected into the MSA. The PVN administration of PD 123319 and [Sar1, Ala8] ANG II blocked whereas losartan attenuated the diuresis and natriuresis induced by MSA administration of ANG II. Conclusion - MSA involvement with PVN on water and sodium homeostasis and arterial pressure modulation utilizing ANGII receptors is suggested.
Resumo:
Cholinergic activation of the medial septal area (MSA) with carbachol produces thirst, natriuresis, antidiuresis and pressor response. In the brain, hydrogen peroxide (H2O2) modulates autonomic and behavioral responses. In the present study, we investigated the effects of the combination of carbachol and H2O2 injected into the MSA on water intake, renal excretion, cardiovascular responses and the activity of vasopressinergic and oxytocinergic neurons in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Furthermore, the possible modulation of carbachol responses by H2O2 acting through K+ATP channels was also investigated. Male Holtzman rats (280–320 g) with stainless steel cannulas implanted in the MSA were used. The pre-treatment with H2O2 in the MSA reduced carbachol-induced thirst (7.9 ± 1.0, vs. carbachol: 13.2 ± 2.0 ml/60 min), antidiuresis (9.6 ± 0.5, vs. carbachol: 7.0 ± 0.8 ml/120 min,), natriuresis (385 ± 36, vs. carbachol: 528 ± 46 μEq/120 min) and pressor response (33 ± 5, vs. carbachol: 47 ± 3 mmHg). Combining H2O2 and carbachol into the MSA also reduced the number of vasopressinergic neurons expressing c-Fos in the PVN (46.4 ± 11.2, vs. carbachol: 98.5 ± 5.9 c-Fos/AVP cells) and oxytocinergic neurons expressing c-Fos in the PVN (38.5 ± 16.1, vs. carbachol: 75.1 ± 8.5 c-Fos/OT cells) and in the SON (57.8 ± 10.2, vs. carbachol: 102.7 ± 7.4 c-Fos/OT cells). Glibenclamide (K+ATP channel blocker) into the MSA partially reversed H2O2 inhibitory responses. These results suggest that H2O2 acting through K+ATP channels in the MSA attenuates responses induced by cholinergic activation in the same area.