374 resultados para SEPARATIONS
Resumo:
Micelle-forming bile salts have previously been shown to be effective pseudo-stationary phases for separating the chiral isomers of binaphthyl compounds with micellar electrokinetic capillary chromatography (MEKC). Here, cholate micelles are systematically investigated via electrophoretic separations and NMR using R, S-1, 1¿- binaphthyl- 2, 2¿-diylhydrogenphosphate (BNDHP) as a model chiral analyte. The pH, temperature, and concentration of BNDHP were systematically varied while monitoring the chiral resolution obtained with MEKC and the chemical shift of various protons in NMR. NMR data for each proton on BNDHP is monitored as a function of cholate concentration: as cholate monomers begin to aggregate and the analyte molecules begin to sample the micelle aggregate we observe changes in the cholate methyl and S-BNDHP proton chemical shifts. From such NMR data, the apparent CMC of cholate at pH 12 is found to be about 13-14 mM, but this value decreases at higher pH, suggesting that more extreme pHs may give rise to more effective separations. In general, CMCs increase with temperature indicating that one may be able to obtain better separations at lower temperatures. S-BNDHP concentrations ranging from 50 ¿M to 400 ¿M (pH 12.8) gave rise to apparent cholate CMC values from 10 mM to 8 mM, respectively, indicating that S-BNDHP, the chiral analyte molecule, may play an active role in stabilizing cholate aggregates. In all, these data show that NMR can be used to systematically investigate a complex multi-variable landscape of potential optimizations of chiral separations.
Resumo:
GENTRANS, a comprehensive one-dimensional dynamic simulator for electrophoretic separations and transport, was extended for handling electrokinetic chiral separations with a neutral ligand. The code can be employed to study the 1:1 interaction of monovalent weak and strong acids and bases with a single monovalent weak or strong acid or base additive, including a neutral cyclodextrin, under real experimental conditions. It is a tool to investigate the dynamics of chiral separations and to provide insight into the buffer systems used in chiral capillary zone electrophoresis (CZE) and chiral isotachophoresis. Analyte stacking across conductivity and buffer additive gradients, changes of additive concentration, buffer component concentration, pH, and conductivity across migrating sample zones and peaks, and the formation and migration of system peaks can thereby be investigated in a hitherto inaccessible way. For model systems with charged weak bases and neutral modified β-cyclodextrins at acidic pH, for which complexation constants, ionic mobilities, and mobilities of selector-analyte complexes have been determined by CZE, simulated and experimentally determined electropherograms and isotachopherograms are shown to be in good agreement. Simulation data reveal that CZE separations of cationic enantiomers performed in phosphate buffers at low pH occur behind a fast cationic migrating system peak that has a small impact on the buffer composition under which enantiomeric separation takes place.
Resumo:
February 1994.
Resumo:
"October 1947."
Resumo:
"August 1991."
Resumo:
Measurements (autokeratometry, A-scan ultrasonography and video ophthalmophakometry) of ocular surface radii, axial separations and alignment were made in the horizontal meridian of nine emmetropes (aged 20-38 years) with relaxed (cycloplegia) and active accommodation (mean ± 95% confidence interval: 3.7 ± 1.1 D). The anterior chamber depth (-1.5 ± 0.3 D) and both crystalline lens surfaces (front 3.1 ± 0.8 D; rear 2.1 ± 0.6 D) contributed to dioptric vergence changes that accompany accommodation. Accommodation did not alter ocular surface alignment. Ocular misalignment in relaxed eyes is mainly because of eye rotation (5.7 ± 1.6° temporally) with small amounts of lens tilt (0.2 ± 0.8° temporally) and decentration (0.1 ± 0.1 mm nasally) but these results must be viewed with caution as we did not account for corneal asymmetry. Comparison of calculated and empirically derived coefficients (upon which ocular surface alignment calculations depend) revealed that negligible inherent errors arose from neglect of ocular surface asphericity, lens gradient refractive index properties, surface astigmatism, effects of pupil size and centration, assumed eye rotation axis position and use of linear equations for analysing Purkinje image shifts. © 2004 The College of Optometrists.
Resumo:
The kaon electroproduction reaction H(e, e ′K+)Λ was studied as a function of the four momentum transfer, Q2, for different values of the virtual photon polarization parameter. Electrons and kaons were detected in coincidence in two High Resolution Spectrometers (HRS) at Jefferson Lab. Data were taken at electron beam energies ranging from 3.4006 to 5.7544 GeV. The kaons were identified using combined time of flight information and two Aerogel Čerenkov detectors used for particle identification. For different values of Q2 ranging from 1.90 to 2.35 GeV/c2 the center of mass cross sections for the Λ hyperon were determined for 20 kinematics and the longitudinal, σ L, and transverse, σT, terms were separated using the Rosenbluth separation technique. ^ Comparisons between available models and data have been studied. The comparison supports the t-channel dominance behavior for kaon electroproduction. All models seem to underpredict the transverse cross section. An estimate of the kaon form factor has been explored by determining the sensitivity of the separated cross sections to variations of the kaon EM form factor. From comparison between models and data we can conclude that interpreting the data using the Regge model is quite sensitive to a particular choice for the EM form factors. The data from the E98-108 experiment extends the range of the available kaon electroproduction cross section data to an unexplored region of Q2 where no separations have ever been performed. ^
Resumo:
Cation exchange chromatography (CEX) is a well established strategy for the characterization of monoclonal antibodies (mAbs). The optimization of mobile phase conditions is well described in the literature, but there is a lack of information about CEX stationary phases for the analysis of therapeutic proteins. The aim of this study was to compare five state-of-the-art CEX stationary phases based on the retention, selectivity and resolving power achieved in pH- and salt-gradient modes, with various therapeutic mAbs and their variants. The Sepax Antibodix WCX-NP3, Thermo MAbPac SCX-10 RS, YMC BioPro SP-F, Waters Protein-Pak Hi Res SP and Agilent Bio mAb NP1.7 SS were considered in this study. In terms of retention, the YMC Bio Pro SP-F material was the less retentive one, while the Agilent Bio mAb NP1.7 SS provides the highest retention. Regarding the selectivity achieved between the main mAbs isoforms and their variants, the Thermo MabPac SCX column generally gave the highest selectivity. Finally, it was hard to rank columns in term of kinetic performance since their performance is strongly solute (mAb) and elution mode (pH or salt gradient) dependent. However, the highest resolution--in most cases--was observed on the strong cation exchanger YMC Bio Pro SP-F material.
Resumo:
Objective: To examine the reliability of work-related activity coding for injury-related hospitalisations in Australia. Method: A random sample of 4373 injury-related hospital separations from 1 July 2002 to 30 June 2004 were obtained from a stratified random sample of 50 hospitals across 4 states in Australia. From this sample, cases were identified as work-related if they contained an ICD-10-AM work-related activity code (U73) allocated by either: (i) the original coder; (ii) an independent auditor, blinded to the original code; or (iii) a research assistant, blinded to both the original and auditor codes, who reviewed narrative text extracted from the medical record. The concordance of activity coding and number of cases identified as work-related using each method were compared. Results: Of the 4373 cases sampled, 318 cases were identified as being work-related using any of the three methods for identification. The original coder identified 217 and the auditor identified 266 work-related cases (68.2% and 83.6% of the total cases identified, respectively). Around 10% of cases were only identified through the text description review. The original coder and auditor agreed on the assignment of work-relatedness for 68.9% of cases. Conclusions and Implications: The current best estimates of the frequency of hospital admissions for occupational injury underestimate the burden by around 32%. This is a substantial underestimate that has major implications for public policy, and highlights the need for further work on improving the quality and completeness of routine, administrative data sources for a more complete identification of work-related injuries.
Resumo:
Objective: To quantify the extent to which alcohol related injuries are adequately identified in hospitalisation data using ICD-10-AM codes indicative of alcohol involvement. Method: A random sample of 4373 injury-related hospital separations from 1 July 2002 to 30 June 2004 were obtained from a stratified random sample of 50 hospitals across 4 states in Australia. From this sample, cases were identified as involving alcohol if they contained an ICD-10-AM diagnosis or external cause code referring to alcohol, or if the text description extracted from the medical records mentioned alcohol involvement. Results: Overall, identification of alcohol involvement using ICD codes detected 38% of the alcohol-related sample, whilst almost 94% of alcohol-related cases were identified through a search of the text extracted from the medical records. The resultant estimate of alcohol involvement in injury-related hospitalisations in this sample was 10%. Emergency department records were the most likely to identify whether the injury was alcohol-related with almost three-quarters of alcohol-related cases mentioning alcohol in the text abstracted from these records. Conclusions and Implications: The current best estimates of the frequency of hospital admissions where alcohol is involved prior to the injury underestimate the burden by around 62%. This is a substantial underestimate that has major implications for public policy, and highlights the need for further work on improving the quality and completeness of routine administrative data sources for identification of alcohol-related injuries.
Resumo:
Railway signaling facilitates two main functions, namely, train detection and train control, in order to maintain safe separations among the trains. Track circuits are the most commonly used train detection means with the simple open/close circuit principles; and subsequent adoption of axle counters further allows the detection of trains under adverse track conditions. However, with electrification and power electronics traction drive systems, aggravated by the electromagnetic interference in the vicinity of the signaling system, railway engineers often find unstable or even faulty operations of track circuits and axle counting systems, which inevitably jeopardizes the safe operation of trains. A new means of train detection, which is completely free from electromagnetic interference, is therefore required for the modern railway signaling system. This paper presents a novel optical fiber sensor signaling system. The sensor operation, field setup, axle detection solution set, and test results of an installation in a trial system on a busy suburban railway line are given.
Resumo:
Urban expansion continues to encroach on existing or newly implemented sewerage infrastructure. In this context, legislation and guidelines, both national and international, provide limited direction to the amenity allocation of appropriate buffering distances for land use planners and infrastructure providers. A review of published literature suggests the dominant influences include topography, wind speed and direction, temperature, humidity, existing land uses and vegetation profiles. A statistical criteria review of these factors against six years of sewerage odour complaint data was undertaken to ascertain their influence and a complaint severity hierarchy was established. These hierarchical results suggested the main criteria were: topographical location, elevation relative to the odour source and wind speed. Establishing a justifiable criterion for buffer zone allocations will assist in analytically determining a basis for buffer separations and will assist planners and infrastructure designers in assessing lower impact sewerage infrastructure locations.
Resumo:
Background The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships. Results We developed a novel approach to predict residue-wise contact order values in proteins based on support vector regression (SVR), starting from primary amino acid sequences. We explored seven different sequence encoding schemes to examine their effects on the prediction performance, including local sequence in the form of PSI-BLAST profiles, local sequence plus amino acid composition, local sequence plus molecular weight, local sequence plus secondary structure predicted by PSIPRED, local sequence plus molecular weight and amino acid composition, local sequence plus molecular weight and predicted secondary structure, and local sequence plus molecular weight, amino acid composition and predicted secondary structure. When using local sequences with multiple sequence alignments in the form of PSI-BLAST profiles, we could predict the RWCO distribution with a Pearson correlation coefficient (CC) between the predicted and observed RWCO values of 0.55, and root mean square error (RMSE) of 0.82, based on a well-defined dataset with 680 protein sequences. Moreover, by incorporating global features such as molecular weight and amino acid composition we could further improve the prediction performance with the CC to 0.57 and an RMSE of 0.79. In addition, combining the predicted secondary structure by PSIPRED was found to significantly improve the prediction performance and could yield the best prediction accuracy with a CC of 0.60 and RMSE of 0.78, which provided at least comparable performance compared with the other existing methods. Conclusion The SVR method shows a prediction performance competitive with or at least comparable to the previously developed linear regression-based methods for predicting RWCO values. In contrast to support vector classification (SVC), SVR is very good at estimating the raw value profiles of the samples. The successful application of the SVR approach in this study reinforces the fact that support vector regression is a powerful tool in extracting the protein sequence-structure relationship and in estimating the protein structural profiles from amino acid sequences.
Resumo:
Urban expansion continues to encroach on once isolated sewerage infrastructure. In this context,legislation and guidelines provide limited direction to the amenity allocation of appropriate buffer distances for land use planners and infrastructure providers. Topography, wind speed and direction,temperature, humidity, existing land uses and vegetation profiles are some of the factors that require investigation in analytically determining a basis for buffer separations. This paper discusses the compilation and analysis of six years of Logan sewerage odour complaint data. Graphically,relationships between the complaints, topographical features and meteorological data are presented. Application of a buffer sizing process could assist planners and infrastructure designers alike, whilst automatically providing extra green spaces. Establishing a justifiable criterion for buffer zone allocations can only assist in promoting manageable growth for healthier and more sustainable communities.