986 resultados para SELF-SIMILARITY
Resumo:
This paper will examine the idea of the fold arid its assimilation into architecture through philosophy and mathematics. In all its iterations, the fold appears as two constitutive items: the fold as self-similarity, which implies recursion; the fold within the fold, and in turn, the fold as continuous discontinuity. The persistence of this conception of die fold will be demonstrated through a discussion of Leibniz's Monadology, Deleuze's Le Pli, and some mathematical ideas from catastrophe and chaos theory. This raises the issue of continuity between disciplines and thus the philosophical status this confers on the fold.
Resumo:
High temperature expansion is an effective tool for studying second order phase transitions. With this in mind, we have looked at a high momentum expansion for homogeneous isotropic turbulence. Combining our results with those of the inertial range, we give another view of extended self-similarity (ESS).
Resumo:
A new geometrical method for generating aperiodic lattices forn-fold non-crystallographic axes is described. The method is based on the self-similarity principle. It makes use of the principles of gnomons to divide the basic triangle of a regular polygon of 2n sides to appropriate isosceles triangles and to generate a minimum set of rhombi required to fill that polygon. The method is applicable to anyn-fold noncrystallographic axis. It is first shown how these regular polygons can be obtained and how these can be used to generate aperiodic structures. In particular, the application of this method to the cases of five-fold and seven-fold axes is discussed. The present method indicates that the recursion rule used by others earlier is a restricted one and that several aperiodic lattices with five fold symmetry could be generated. It is also shown how a limited array of approximately square cells with large dimensions could be detected in a quasi lattice and these are compared with the unit cell dimensions of MnAl6 suggested by Pauling. In addition, the recursion rule for sub-dividing the three basic rhombi of seven-fold structure was obtained and the aperiodic lattice thus generated is also shown.
Resumo:
This paper reports measurements of turbulent quantities in an axisymmetric wall jet subjected to an adverse pressure gradient in a conical diffuser, in such a way that a suitably defined pressure-gradient parameter is everywhere small. Self-similarity is observed in the mean velocity profile, as well as the profiles of many turbulent quantities at sufficiently large distances from the injection slot. Autocorrelation measurements indicate that, in the region of turbulent production, the time scale of ν fluctuations is very much smaller than the time scale of u fluctuations. Based on the data on these time scales, a possible model is proposed for the Reynolds stress. One-dimensional energy spectra are obtained for the u, v and w components at several points in the wall jet. It is found that self-similarity is exhibited by the one-dimensional wavenumber spectrum of $\overline{q^2}(=\overline{u^2}+\overline{v^2}+\overline{w^2})$, if the half-width of the wall jet and the local mean velocity are used for forming the non-dimensional wavenumber. Both the autocorrelation curves and the spectra indicate the existence of periodicity in the flow. The rate of dissipation of turbulent energy is estimated from the $\overline{q^2}$ spectra, using a slightly modified version of a previously suggested method.
Resumo:
By inflating basic rhombuses, with a self-similarity principle, non-periodic tiling of 2-d planes is possible with 4, 5, 6, 7, 8, … -fold symmetries. As examples, non-periodic tilings with crystallographically allowed 4-fold symmetry and crystallographically forbidden 7-fold symmetry are presented in detail. The computed diffraction patterns of these tilings are also discussed.
Resumo:
In this work, an analytical model is proposed for fatigue crack propagation in plain concrete based on population growth exponential law and in conjunction with principles of dimensional analysis and self-similarity. This model takes into account parameters such as loading history, fracture toughness, crack length, loading ratio and structural size. The predicted results are compared with experimental crack growth data for constant and variable amplitude loading and are found to capture the size effect apart from showing a good agreement. Using this model, a sensitivity analysis is carried out to study the effect of various parameters that influence fatigue failure. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
It is well known that fatigue in concrete causes excessive deformations and cracking leading to structural failures. Due to quasi-brittle nature of concrete and formation of a fracture process zone, the rate of fatigue crack growth depends on a number of parameters, such as, the tensile strength, fracture toughness, loading ratio and most importantly the structural size. In this work, an analytical model is proposed for estimating the fatigue crack growth in concrete by using the concepts of dimensional analysis and including the above parameters. Knowing the governed and the governing parameters of the physical problem and by using the concepts of self-similarity, a relationship is obtained between different parameters involved. It is shown that the proposed fatigue law is able to capture the size effect in plain concrete and agrees well with different experimental results. Through a sensitivity analysis, it is shown that the structural size plays a dominant role followed by loading ratio and the initial crack length in fatigue crack propagation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We review some advances in the theory of homogeneous, isotropic turbulence. Our emphasis is on the new insights that have been gained from recent numerical studies of the three-dimensional Navier Stokes equation and simpler shell models for turbulence. In particular, we examine the status of multiscaling corrections to Kolmogorov scaling, extended self similarity, generalized extended self similarity, and non-Gaussian probability distributions for velocity differences and related quantities. We recount our recent proposal of a wave-vector-space version of generalized extended self similarity and show how it allows us to explore an intriguing and apparently universal crossover from inertial- to dissipation-range asymptotics.
Resumo:
A group of high-order finite-difference schemes for incompressible flow was implemented to simulate the evolution of turbulent spots in channel flows. The long-time accuracy of these schemes was tested by comparing the evolution of small disturbances to a plane channel flow against the growth rate predicted by linear theory. When the perturbation is the unstable eigenfunction at a Reynolds number of 7500, the solution grows only if there are a comparatively large number of (equispaced) grid points across the channel. Fifth-order upwind biasing of convection terms is found to be worse than second-order central differencing. But, for a decaying mode at a Reynolds number of 1000, about a fourth of the points suffice to obtain the correct decay rate. We show that this is due to the comparatively high gradients in the unstable eigenfunction near the walls. So, high-wave-number dissipation of the high-order upwind biasing degrades the solution especially. But for a well-resolved calculation, the weak dissipation does not degrade solutions even over the very long times (O(100)) computed in these tests. Some new solutions of spot evolution in Couette flows with pressure gradients are presented. The approach to self-similarity at long times can be seen readily in contour plots.
Resumo:
This paper reports measurements of turbulent quantities in an axisymmetric wall jet subjected to an adverse pressure gradient in a conical diffuser, in such a way that a suitably defined pressure-gradient parameter is everywhere small. Self-similarity is observed in the mean velocity profile, as well as the profiles of many turbulent quantities at sufficiently large distances from the injection slot. Autocorrelation measurements indicate that, in the region of turbulent production, the time scale of ν fluctuations is very much smaller than the time scale of u fluctuations. Based on the data on these time scales, a possible model is proposed for the Reynolds stress. One-dimensional energy spectra are obtained for the u, v and w components at several points in the wall jet. It is found that self-similarity is exhibited by the one-dimensional wavenumber spectrum of $\overline{q^2}(=\overline{u^2}+\overline{v^2}+\overline{w^2})$, if the half-width of the wall jet and the local mean velocity are used for forming the non-dimensional wavenumber. Both the autocorrelation curves and the spectra indicate the existence of periodicity in the flow. The rate of dissipation of turbulent energy is estimated from the $\overline{q^2}$ spectra, using a slightly modified version of a previously suggested method.
Resumo:
Fundamental studies on a compact trapped vortex combustor indicate that cavity injection strategies play a major role on flame stability. Detailed experiments indicate that blow-out occurs for a certain range of cavity air flow velocities. An unsteady RANS-based reacting flow simulation tool has been utilized to study the basic dynamics of cavity vortex for various flow conditions. The phenomenon of flame blow-out at certain intermediate cavity air velocities is explained on the basis of transition from a cavity-stabilized mode to an opposed flow stagnation mode. A novel strategy is proposed for achieving flame stability at all conditions. This involves using a flow guide vane in the path of the main flow to direct a portion of the main flow into the cavity. This seems to result in a desirable dual vortex structure, i.e., a small clockwise vortex behind the vane and large counterclockwise vortex in the cavity. Experimental results show stable flame at all flow conditions with the flow guide vane, and pressure drop is estimated to be within acceptable limits. Cold flow simulations show self-similar velocity profiles for a range of main inlet velocities, and high reverse velocity ratios (-0.3) are observed. Such a high-velocity ratio in the reverse flow shear layer profile leads to enhanced production of turbulence imperative to compact combustors. Reacting flow simulations show even higher reverse velocity ratios (above -0.7) due to flow acceleration. The flame is observed to be stable, even though minor shear layer oscillations are present in the form of vortex shedding. Self-similarity is also observed in reacting flow temperature profiles at combustor exit over the entire range of the mainstream velocity. This indicates that the present configuration holds a promise of delivering robust performance invariant of the flow operating conditions.
Resumo:
We present global multidimensional numerical simulations of the plasma that pervades the dark matter haloes of clusters, groups and massive galaxies (the intracluster medium; ICM). Observations of clusters and groups imply that such haloes are roughly in global thermal equilibrium, with heating balancing cooling when averaged over sufficiently long time- and length-scales; the ICM is, however, very likely to be locally thermally unstable. Using simple observationally motivated heating prescriptions, we show that local thermal instability (TI) can produce a multiphase medium with similar to 104 K cold filaments condensing out of the hot ICM only when the ratio of the TI time-scale in the hot plasma (tTI) to the free-fall time-scale (tff) satisfies tTI/tff? 10. This criterion quantitatively explains why cold gas and star formation are preferentially observed in low-entropy clusters and groups. In addition, the interplay among heating, cooling and TI reduces the net cooling rate and the mass accretion rate at small radii by factors of similar to 100 relative to cooling-flow models. This dramatic reduction is in line with observations. The feedback efficiency required to prevent a cooling flow is similar to 10-3 for clusters and decreases for lower mass haloes; supernova heating may be energetically sufficient to balance cooling in galactic haloes. We further argue that the ICM self-adjusts so that tTI/tff? 10 at all radii. When this criterion is not satisfied, cold filaments condense out of the hot phase and reduce the density of the ICM. These cold filaments can power the black hole and/or stellar feedback required for global thermal balance, which drives tTI/tff? 10. In comparison to clusters, groups have central cores with lower densities and larger radii. This can account for the deviations from self-similarity in the X-ray luminositytemperature () relation. The high-velocity clouds observed in the Galactic halo can be due to local TI producing multiphase gas close to the virial radius if the density of the hot plasma in the Galactic halo is >rsim 10-5 cm-3 at large radii.
Resumo:
Scaling laws are represented in power law form and can be utilized to extract the characteristic properties of a new phenomenon with the help of self-similar solutions. In this work, an attempt has been made to propose a scaling law analytically, for plain concrete when subjected to variable amplitude loading. Due to the application of overload on concrete structures, acceleration in the crack growth process takes place. A closed form expression has been developed to capture the acceleration in crack growth rate in conjunction with the principles of dimensional analysis and self-similarity. The proposed model accounts for parameters such as, the tensile strength, fracture toughness, overload effect and the structural size. Knowing the governed and the governing parameters of the physical problem and by using the concepts of self-similarity, a relationship is obtained between the different parameters involved. The predicted results are compared with experimental crack growth data for variable amplitude loading and are found to capture the overload effect with sufficient accuracy. Through a sensitivity analysis, fracture toughness is found to be the most dominant parameter in accelerating the crack length due to application of overload.
Estimating the Hausdorff-Besicovitch dimension of boundary of basin of attraction in helicopter trim
Resumo:
Helicopter trim involves solution of nonlinear force equilibrium equations. As in many nonlinear dynamic systems, helicopter trim problem can show chaotic behavior. This chaotic behavior is found in the basin of attraction of the nonlinear trim equations which have to be solved to determine the main rotor control inputs given by the pilot. This study focuses on the boundary of the basin of attraction obtained for a set of control inputs. We analyze the boundary by considering it at different magnification levels. The magnified views reveal intricate geometries. It is also found that the basin boundary exhibits the characteristic of statistical self-similarity, which is an essential property of fractal geometries. These results led the authors to investigate the fractal dimension of the basin boundary. It is found that this dimension is indeed greater than the topological dimension. From all the observations, it is evident that the boundary of the basin of attraction for helicopter trim problem is fractal in nature. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The multiport network approach is extended to analyze the behavior of microstrip fractal antennas. The capacitively fedmicrostrip square ring antenna has the side opposite to the feed arm replaced with a fractal Minkowski geometry. Dual frequency operation is achieved by suitably choosing the indentation of this fractal geometry. The width of the two sides adjacent to this is increased to further control the resonant characteristics and the ratio of the two resonance frequencies of this antenna. The impedance matrix for the multiport network model of this antenna is simplified exploiting self-similarity of the geometry with greater accuracy and reduced analysis time. Experimentally validated results confirm utility of the approach in analyzing the input characteristics of similar multi-frequency fractal microstrip antennas with other fractal geometries.