985 resultados para SELECTIVE ADSORPTION
Resumo:
With new photocatalysts of gold nanoparticles supported on zeolite supports (Au/zeolite), oxidation of benzyl alcohol and its derivatives into the corresponding aldehydes can proceed well with a high selectivity (99%) under visible light irradiation at ambient temperature. Au/zeolite photocatalysts were characterized by UV/Vis, XPS, TEM, XRD, EDS, BET, IR, and Raman techniques. The Surface Plasmon Resonance (SPR) effect of gold nanoparticles, the adsorption capability of zeolite supports, and the molecular polarities of aromatic alcohols were demonstrated to have an essential correlation with the photocatalytic performances. In addition, the effects of light intensity, wavelength range, and the role of molecular oxygen were investigated in detail. The kinetic study indicated that the visible light irradiation required much less apparent activation energy for photooxidation compared with thermal reaction. Based on the characterization data and the photocatalytic performances, we proposed a possible photooxidation mechanism.
Resumo:
Photocatalytic synthesis using visible light is a desirable chemical process because of its potential to utilize sunlight. Supported gold nanoparticles (Au-NPs) were found to be efficient photocatalysts and the effects of the supports were identified including CeO2, TiO2, ZrO2, Al2O3, and zeolite Y. In particular Au/CeO2 exhibited the high catalytic activity to reduce nitroaromatics to azo compounds, hydrogenate azobenzene to hydroazobenzene, reduce ketones to alcohols, and deoxygenate epoxides to alkenes at ambient temperatures, under irradiation of visible light (or simulated sunlight). The reac-tive efficiency depends on two primary factors: one is the light adsorption of catalysts and another is the driving ability of catalysts corresponding to the reactants. The light absorption by Au-NPs is due to surface plasmon resonance effect or inter-band electron transition; this is related to the reduction ability of the photocatalysts. Irradiation with shorter wavelengths can excite the conduction electrons in Au-NPs to higher energy levels and as a result, induce reduction with more negative reduction potentials. It is known when irradiated with light the Au-NPs can abstract hydrogen from isopropanol forming Au-H species on the Au-NP surface. Hence, we proposed that the active Au-H species will react with the N=O, N=N, C=O double bonds or epoxide bonds, which are weakened by the interaction with the excited electrons in the Au-NPs, and yield the final reductive products. The reacting power of the Au-H species depends on the energy of the excited electrons in Au-NPs: the higher the electronic energy, the stronger the reduction ability of the Au-H species. This finding demonstrates that we can tune the reduction ability of the photocatalysts by manipulating the irradiation wavelength.
Resumo:
Titanate nanotubes (TNT) supported AgI nanoparticles were prepared by a two-step method: the deposition of Ag2O on titanate nanotubes from AgNO3 solution and the subsequent I-adsorption process from NaI solution. It is found that the supported AgI samples exhibited excellent photoactivity for the selective oxidation of benzylamine to the corresponding imine under visible light illumination and the photocatalyst can be used for many times without apparent activity loss. X-ray diffraction studies, transmission electron microscopy, diffuse reflectance UV-Vis spectroscopy and nitrogen adsorption measurements were used for the characterization of the as-prepared and recycled AgI samples. It is found that under visible light irradiation, AgI partially decomposed to produce Ag/AgI nanostructure and thus stabilized. The photoactivity of supported Ag/AgI for the selective oxidation of benzylamine was studied in terms of the light intensity, wavelength, temperature and substituent. It is proposed that the formation of plasmonic Ag nanoparticles should be responsible for the high activity and selectivity.
Resumo:
This article describes the highly sensitive and selective determination of epinephrine (EP) using self-assembled monomolecular film (SAMF) of 1,8,15,22-tetraamino-phthalocyanatonickel(II) (4α-NiIITAPc) on Au electrode. The 4α-NiIITAPc SAMF modified electrode was prepared by spontaneous adsorption of 4α-NiIITAPc from dimethylformamide solution. The modified electrode oxidizes EP at less over potential with enhanced current response in contrast to the bare Au electrode. The standard heterogeneous rate constant (k°) for the oxidation of EP at 4α-NiIITAPc SAMF modified electrode was found to be 1.94×10−2 cm s−1 which was much higher than that at the bare Au electrode. Further, it was found that 4α-NiIITAPc SAMF modified electrode separates the voltammetric signals of ascorbic acid (AA) and EP with a peak separation of 250 mV. Using amperometric method the lowest detection limit of 50 nM of EP was achieved at SAMF modified electrode. Simultaneous amperometric determination of AA and EP was also achieved at the SAMF modified electrode. Common physiological interferents such as uric acid, glucose, urea and NaCl do not interfere within the potential window of EP oxidation. The present 4α-NiIITAPc SAMF modified electrode was also successfully applied to determine the concentration of EP in commercially available injection.
Resumo:
N-doped TiO2 nanofibres were observed to possess lower aerobic oxidation activity than undoped TiO2 nanofibres in the selective photocatalytic aerobic oxidation of enzylamine and 4-methoxybenzyl alcohol. This was attributed to the reduction free energy of O2 adsorption in the vicinity of nitrogen dopant sites, as indicated by density functional theory (DFT) calculations when three-coordinated oxygen atoms are substituted by nitrogen atoms. It was found that the activity recovered following a controlled calcination of the N-doped NFs in air. The dependence of the conversion of benzylamine and 4-methoxybenzyl alcohol on the intensity of light irradiation confirmed that these reactions were driven by light. Action spectra showed that the two oxidation reactions are responsive to light from the UV region through to the visible light irradiation range. The extended light absorption wavelength range in these systems compared to pure TiO2 materials was found to result from the formation of surface complex species following adsorption of reactants onto the catalysts' surface, evidenced by the in situ IR experiment. Both catalytic and in situ IR results reveal that benzaldehyde is the intermediate in the aerobic oxidation of benzylamine to N-benzylidenebenzylamine process.
Resumo:
The flocculation and filtration characteristics of typical Indian iron ore fines have been studied using starch as flocculant in the presence of an inorganic electrolyte, namely calcium chloride. The effect of various parameters such as pH, starch and calcium chloride concentrations and pulp density on the settling and filtration rates, turbidity of the supernatant and on residual starch and calcium ion concentrates has been investigated through a statistical design and analysis approach and subsequently optimised on a laboratory scale. The adsorption mechanisms of starch onto haematite have been elucidated through adsorption density measurements, infrared and X-ray photoelectron spectroscopic techniques. The rheological property of the polymer solutions of relevance to flocculations has also been investigated. Further, the role of metal ion-starch interactions in the bulk solution, has been studied. In order to understand the nature of polymer adsorption at the double-layer, electrokinetic studies have been carried out with the iron ore mineral samples using starch and calcium chloride. Based on the above findings, selective floculaation tests on artificial mixtures of iron ore minerals have been carried out to determine the separation efficiencies from the view point of alumina and silica removal from haematite as well as the control of alumina: silica ratio in Indian iron ores.
Resumo:
Arsenic pollution of water is a major problem faced worldwide. Arsenic is a suspected carcinogen in human beings and is harmful to other living beings. In the present study, a novel adsorbent was used to remove arsenate [As(V)] from synthetic solutions. The adsorbent, which is a mixture of rare earth oxides, was found to adsorb As(V) rapidly and effectively. The effect of various parameters such as contact time, initial concentration, pH, and adsorbent dose on adsorption efficiency was investigated. More than 90% of the adsorption occurred within the first 10 min and the kinetic rate constant was found to be about 3.5 mg min(-1). Adsorption efficiency was found to be dependent on the initial As(V) concentration, and the adsorption behavior followed the Langmuir adsorption model. The optimum pH was found to be 6.5. The presence of other ions such as nitrate, phosphate, sulphate, and silicate decreased the adsorption of As(V) by about 20-30%. The adsorbed As(V) could be desorbed easily by washing the adsorbent with pH 12 solution. This study demonstrates the applicability of naturally occurring rare earth oxides as selective adsorbents for As(V) from solutions.
Resumo:
Adhesion of Thiobacillus ferrooxidans to pyrite and chalcopyrite in relation to its importance in bioleaching and bioflotation has been studied. Electrokinetic studies as well as FT-IR spectra suggest that the surface chemistry of Thiobacillus ferrooxidans depends on bacterial growth conditions. Sulfur-,Pyrite- and chalcopyrite-grown Thiobacillus ferrooxidans were found to be relatively more hydrophobic. The altered surface chemistry of Thiobacillus ferrooxidans was due to secretion of newer and specific proteinaceous compounds. The adsorption density corresponds to a monolayer coverage in a horizontal orientation of the cells. The xanthate flotation of pyrite in presence of Thiobacillus ferrooxidans is strongly depressed where as the cells have insignificant effect on chalcopyrite flotation. This study demonstrate that: (a)Thiobacillus ferrooxidans cells can be used for selective flotation of chalcopyrite from pyrite and importantly at natural pH values. (b)Sulfur-grown cells exhibits higher leaching kinetics than ferrous ion-grown cells.
Resumo:
Microbially induced selective flocculation of hematite from kaolinite has been demonstrated using Bacillus subtilis. Growth of bacterial cells in the presence of kaolinite resulted in enhanced production of extracellular proteins while that of hematite promoted significant secretion of exopolysaccharides. Bacterial cells were adapted to grow in the presence of the minerals and use of hematite-grown and kaolinite-grown cells and their metabolic products in the selective flocculation of hematite and dispersion of kaolinite illustrated. Bacterial cells and extracellular polysaccharides exhibited higher surface affinity towards hematite, rendering it hydrophilic; while significant protein adsorption enhanced surface hydrophobicity of kaolinite. Bacterial interaction with hematite and kaolinite resulted in significant surface chemical changes on the minerals. Due to higher surface affinity towards extracellular proteins, zeta potentials of kaolinite shifted in the positive direction, while those of hematite shifted in the negative direction due to higher adsorption of extracellular polysaccharides. Bacterial interaction promoted selective flocculation of only hematite, while kaolinite was efficiently dispersed. Mineral-specific stress proteins were generated on growing B. subtilis in the presence of kaolinite. Interfacial aspects of microbe-mineral interactions are illustrated to explain microbially-induced selective flocculation of hematite from kaolinite with relevance to clay and iron ore beneficiation. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Adsorption experiments of mixtures of long chain alkanes into silicalite under liquid phase conditions show selectivity inversion and azeotrope formation. These effects are due to the subtle interplay between the size of the adsorbed molecules and pore topology of the adsorbent. In this study, the selective uptake of lighter component during liquid phase adsorption of C/C and C/C n-alkane binary mixtures in the zeolite silicalite is understood through configurational bias grand-canonical Monte Carlo molecular simulation technique and a coarse-grained siting analysis. The simulations are conducted under conditions of low and intermediate levels of loading. The siting pattern of the adsorbates inside the zeolite pores explain the selectivity as seen in experiments.
Probing into the catalytic nature of Co/sulfated zirconia for selective reduction of NO with methane
Resumo:
In this work, the structural and surface properties of Co-loaded sulfated zirconia (SZ) catalysts were studied by X-ray diffraction (XRD), N-2 adsorption, NH3-TPD, FT-IR spectroscopy, H-2-TPR, UV-vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and NO-TPD. NH3-TPD and FT-IR spectra results of the catalysts showed that the sulfation process of the support resulted in the generation of strong Bronsted and Lewis acid sites, which is essential for the SCR of NO with methane. On the other hand, the N-2 adsorption, H-2-TPR, UV/vis DRS, and XPS of the catalysts demonstrated that the presence of the SO42- species promoted the dispersion of the Co species and prevented the formation Of Co3O4. Such an increased dispersion of Co species suppressed the combustion reaction of CH4 by O-2 and increased the selectivity toward NO reduction. The NO-TPD proved that the loading of Co increased the adsorption of NO over SZ catalysts, which is another reason for the promoting effect of Co. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Silver impregnated H-ZSM-5 zeolite catalysts with silver loading from 3 to 15 wt.% were investigated for the selective catalytic reduction (SCR) of NOx with CH4 in the excess of oxygen. X-ray diffraction (XRD) and UV-Vis measurements established the structure of silver catalysts. A relationship between the structure of silver catalysts and their catalytic functions for the SCR of NOx by CH4 was clarified. The NO conversion to N-2 showed a S-shape dependence on the increase of Ag loading. No linear dependence of catalytic activity on the amount of silver ions in the zeolite cation sites was observed. Contrastively, the activity was significantly enhanced by the nano-sized silver particles formed on the higher Ag loading samples (greater than or equal to7 wt.%). Temperature programmed desorption (TPD) and temperature programmed reduction (TPR) studies showed that nano-silver particles provided much stronger adsorption centers for active intermediates NO3-(s) on which adsorbed NO3-(s) could be effectively reduced by the activated methane. Silver ions in the zeolite cation sites might catalyze the reaction through activation of CH4 at lower temperatures. Activated CH4 reacted with NO3-(s) adsorbed on nano-silver particles to produce N-2 and CO2. (C) 2003 Elsevier B.V. All rights reserved.