989 resultados para SECONDARY ELECTRONS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this research was to demonstrate a high current and stable field emission (FE) source based on carbon nanotubes (CNTs) and electron multiplier microchannel plate (MCP) and design efficient field emitters. In recent years various CNT based FE devices have been demonstrated including field emission displays, x-ray source and many more. However to use CNTs as source in high powered microwave (HPM) devices higher and stable current in the range of few milli-amperes to amperes is required. To achieve such high current we developed a novel technique of introducing a MCP between CNT cathode and anode. MCP is an array of electron multipliers; it operates by avalanche multiplication of secondary electrons, which are generated when electrons strike channel walls of MCP. FE current from CNTs is enhanced due to avalanche multiplication of secondary electrons and in addition MCP also protects CNTs from irreversible damage during vacuum arcing. Conventional MCP is not suitable for this purpose due to the lower secondary emission properties of their materials. To achieve higher and stable currents we have designed and fabricated a unique ceramic MCP consisting of high SEY materials. The MCP was fabricated utilizing optimum design parameters, which include channel dimensions and material properties obtained from charged particle optics (CPO) simulation. Child Langmuir law, which gives the optimum current density from an electron source, was taken into account during the system design and experiments. Each MCP channel consisted of MgO coated CNTs which was chosen from various material systems due to its very high SEY. With MCP inserted between CNT cathode and anode stable and higher emission current was achieved. It was ∼25 times higher than without MCP. A brighter emission image was also evidenced due to enhanced emission current. The obtained results are a significant technological advance and this research holds promise for electron source in new generation lightweight, efficient and compact microwave devices for telecommunications in satellites or space applications. As part of this work novel emitters consisting of multistage geometry with improved FE properties were was also developed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gold nanoparticles (GNPs) have shown potential to be used as a radiosensitizer for radiation therapy. Despite extensive research activity to study GNP radiosensitization using photon beams, only a few studies have been carried out using proton beams. In this work Monte Carlo simulations were used to assess the dose enhancement of GNPs for proton therapy. The enhancement effect was compared between a clinical proton spectrum, a clinical 6 MV photon spectrum, and a kilovoltage photon source similar to those used in many radiobiology lab settings. We showed that the mechanism by which GNPs can lead to dose enhancements in radiation therapy differs when comparing photon and proton radiation. The GNP dose enhancement using protons can be up to 14 and is independent of proton energy, while the dose enhancement is highly dependent on the photon energy used. For the same amount of energy absorbed in the GNP, interactions with protons, kVp photons and MV photons produce similar doses within several nanometers of the GNP surface, and differences are below 15% for the first 10 nm. However, secondary electrons produced by kilovoltage photons have the longest range in water as compared to protons and MV photons, e.g. they cause a dose enhancement 20 times higher than the one caused by protons 10 μm away from the GNP surface. We conclude that GNPs have the potential to enhance radiation therapy depending on the type of radiation source. Proton therapy can be enhanced significantly only if the GNPs are in close proximity to the biological target.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Résumé: Ce mémoire de maîtrise est une étude des probabilités d’interactions (sections efficaces) des électrons de basse énergie avec une molécule d’intérêt biologique. Cette molécule est le tétrahydrofurane (THF) qui est un bon modèle de la molécule constituant la colonne vertébrale de l’ADN; le désoxyribose. Étant donné la grande quantité d’électrons secondaires libérés lors du passage des radiations à travers la matière biologique et sachant que ceux-ci déposent la majorité de l’énergie, l’étude de leurs interactions avec les molécules constituant l’ADN devient rapidement d’une grande importance. Les mesures de sections efficaces sont faites à l’aide d’un spectromètre à haute résolution de pertes d’énergie de l’électron. Les spectres de pertes d’énergie de l’électron obtenus de cet appareil permettent de calculer les valeurs de sections efficaces pour chaque vibration en fonction de l’énergie incidente de l’électron. L’article présenté dans ce mémoire traite de ces mesures et des résultats. En effet, il présente et explique en détail les conditions expérimentales, il décrit la méthode de déconvolution qui est utilisée pour obtenir les valeurs de sections efficaces et il présente et discute des 4 résonances observées dans la dépendance en énergie des sections efficaces. En effet, cette étude a permis de localiser en énergie 4 résonances et celles-ci ont toutes été confirmées par des recherches expérimentales et théoriques antérieures sur le sujet des collisions électrons lents-THF. En outre, jamais ces résonances n’avaient été observées simultanément dans une même étude et jamais la résonance trouvée à basse énergie n’avait été observée avec autant d’intensité que cette présente étude. Cette étude a donc permis de raffiner notre compréhension fondamentale des processus résonants impliqués lors de collisions d’électrons secondaires avec le THF. Les valeurs de sections efficaces sont, quant à elles, très prisées par les théoriciens et sont nécessaires pour les simulations Monte Carlo pour prédire, par exemple, le nombre d’ions formées après le passage des radiations. Ces valeurs pourront justement être utilisées dans les modèles de distribution et dépôt d’énergie au niveau nanoscopique dans les milieux biologiques et ceux-ci pourront éventuellement améliorer l’efficacité des modalités radiothérapeutiques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of the ratio of diffusion coefficient to mobility (D/ mu ) of electrons in SF6-N2 and CCl2F2-N2 mixtures over the range 80secondary ionisation coefficients) did not show any significant variation with F for F<50.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lead Telluride (PbTe) with bismuth secondary phase embedded in the bulk has been prepared by matrix encapsulation technique. X-Ray Diffraction results indicated crystalline PbTe, while Rietveld analysis showed that Bi did not substitute at either Pb or Te site, which was further confirmed by Raman and X-Ray Photoelectron Spectroscopy. Scanning Electron Microscopy showed the expected presence of a secondary phase, while Energy Dispersive Spectroscopy results showed a slight deficiency of tellurium in the PbTe matrix, which might have occurred during synthesis due to higher vapor pressure of Te. Transmission Electron Microscopy results did not show any nanometer sized Bi phase. Seebeck coefficient (S) and electrical conductivity (sigma) were measured from room temperature to 725 K. A decrease in S and sigma with increasing Bi content showed an increased scattering of electrons from PbTe-Bi interfaces, along with a possible electron acceptor role of Bi secondary phase. An overall decrease in the power factor was thus observed. Thermal conductivity, measured from 400K to 725K, was smaller at starting temperature with increasing Bi concentration, and almost comparable to that of PbTe at higher temperatures, indicating a more important role of electrons as compared to phonons at PbTe-Bi interfaces. Still, a reasonable zT of 0.8 at 725K was achieved for undoped PbTe, but no improvement was found for bismuth added samples with micrometer inclusions. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4796148]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a physical mechanism that leads to the emergence of secondary threshold laws in processes of multiple ionization of atoms. We argue that the removal of n electrons (n>2) from a many-electron atom may proceed via intermediate resonant states of the corresponding doubly charged ion. For atoms such as rare gases, the density of such resonances in the vicinity of subsequent ionization thresholds is high. As a result, the appearance energies for multiply charged ions are close to these thresholds, while the effective power indices mu in the near-threshold energy dependence of the cross section, sigmaproportional toE(mu), are lower compared to those from the Wannier theory. This provides a possible explanation of the recent experimental results of B. Gstir [Nucl. Instrum. Methods Phys. Res. B 205, 413 (2003)].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The detailed knowledge of fast electron energy transport following interaction with high-intensity, ultra-short laser pulses is a key area for secondary source generation for ELI. We demonstrate polarization spectroscopy at laser intensities up to 10(21) Wcm(-2). This is significant as it suggests that in situ emission spectroscopy may be used as an effective probe of fast electron velocity distributions in regimes relevant to electron transport in solid targets. Ly-alpha doublet emission of nickel (Z = 28) and sulphur (Z = 16) is observed to measure the degree of polarization from the Ly-alpha(1) emission. Ly-alpha(2) emission is unpolarized, and as such acts as a calibration source between spectrometers. The measured ratio of the X-ray sigma- and pi-polarization allows the possibility to infer the velocity distribution function of the fast electron beam.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The secondary electron emission of dielectrics usually is measured by the pulse method, in which the dielectric is irradiated with short pulses of electrons. Attempts to use a dynamic method, in which the dielectric is irradiated continuously, have failed because the dielectric becomes charged and this charge interferes with the emission process. The dynamic method can, however, be applied to metals where volume charges are prevented. This article reports dynamic measurements of the total secondary emission yield from stainless steel, platinum, and aluminum and compares them with results from the current pulse method. In order to apply the dynamic method to metals a simple but important change in the setup was introduced: a dielectric slab was placed between the electrode and the metallic sample, which permitted the sample surface potential and therefore the energy of the incident electrons to change continuously. Unlike for dielectrics, the emission curves for metals are identical when obtained by the two methods. However, for a sample with deliberately oxidized surfaces the total secondary emission yield is smaller when measured with the dynamic method as compared with the pulse method, just as happens for dielectrics. (C) 2000 American Institute of Physics. [S0021-8979(00)03413-7].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

H2O2 is a widespread molecule in many biological systems. It is created enzymatically in living cells during various oxidation reactions and by leakage of electrons from the electron transport chains. Depending on the concentration H2O2 can induce cell protective responses, programmed cell death, or necrosis. Here we provide evidence that H2O2 may function as a developmental signal in the differentiation of secondary walls in cotton (Gossypium hirsutum) fibers. Three lines of evidence support this conclusion: (a) the period of H2O2 generation coincided with the onset of secondary wall deposition, (b) inhibition of H2O2 production or scavenging the available H2O2 from the system prevented the wall differentiation process, and (c) exogenous addition of H2O2 prematurely promoted secondary wall formation in young fibers. Furthermore, we provide support for the concept that H2O2 generation could be mediated by the expression of the small GTPase Rac, the accumulation of which was shown previously to be strongly induced during the onset of secondary wall differentiation. In support of Rac's role in the activation of NADPH oxidase and the generation of reactive oxygen species, we transformed soybean (Glycine max) and Arabidopsis cells with mutated Rac genes. Transformation with a dominantly activated cotton Rac13 gene resulted in constitutively higher levels of H2O2, whereas transformation with the antisense and especially with dominant-negative Rac constructs decreased the levels of H2O2.