989 resultados para SEA-TURTLES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Age at maturity is hard to estimate for species that cannot be directly marked or observed throughout their lives and yet is a key demographic parameter that is needed to assess the conservation status of endangered species. 2. For loggerhead turtles (Caretta caretta) in the North Atlantic and North Pacific, juvenile growth rates (c. 10 cm year−1) were calculated by examining size increases during transoceanic journeys; durations of which were estimated from satellite-tracked Lagrangian surface drifter buoy trajectories. 3. Lagrangian-derived growth estimates were used in a weighted loglinear model of size-specific growth rates for loggerhead turtles and combined with newly available information on size at maturity to estimate an age at maturity of 45 years (older than past estimates). 4. By examining the age at maturity for 79 reptile species, we show that loggerhead turtles, along with other large-bodied Testudine (turtle and tortoise) species, take longer to reach maturity than other reptile species of comparable sizes. This finding heightens concern over the future sustainability of turtle populations. By maturing at an old age, sea turtles will be less resilient to anthropogenic mortality than previously suspected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea turtles show temperature dependent sex determination. Using an empirical relationship between sand and air temperature, we reconstructed the nest temperatures since 1855 at Ascension Island, a major green turtle (Chelonia mydas) rookery. Our results show that inter-beach thermal variations, previously ascribed to the albedo of the sand, which varies hugely from one beach to another, have persisted for the last century. Reconstructed nest temperatures varied by only 0.5 °C on individual beaches over the course of the nesting season, while the temperature difference between two key nesting beaches was always around 3 °C. Hence inter-beach thermal variations are the main factor causing a large range of incubation temperatures at this rookery. There was a general warming trend for nests, with a mean increase in reconstructed nest temperatures for different months of between 0.36 and 0.49 °C for the last 100 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Like many animals migrating through the oceans, sea turtles face difficult navigational tasks when they have to reach distant, specific sites. The paradigmatic case of Brazilian green turtles (Chelonia mydas), which nest on the tiny Ascension Island in the middle of the Atlantic Ocean, has often been the subject of hypotheses concerning their navigational mechanisms. To investigate their nature, we displaced 18 females from Ascension and tracked them by satellite after release from eight different points in the ocean, 60–450 km away from the island. Four turtles moved to Brazil soon after the release, 4 moved in various directions before heading to Brazil, and 10 reached the island. All the successful trips, bar 1, were winding but ended with a final straight segment of variable length, as if the turtles were searching for a sensory contact with the island which they obtained at various distances. The approach to Ascension mostly occurred from the direction opposite to the trade wind, suggesting a navigational role of wind-borne information originating from the island.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous tagging studies of the movements of green turtles (Chelonia mydas) nesting at Ascension Island have shown that they shuttle between this remote target in the Atlantic Ocean and their feeding grounds on the Brazilian coast, a distance of 2300 km or more. Since a knowledge of sea turtle migration routes might allow inferences on the still unknown navigational mechanisms of marine animals, we tracked the postnesting migration of six green turtle females from Ascension Island to Brazil. Five of them reached the proximity of the easternmost stretch of the Brazilian coast, covering 1777 to 2342 km in 33 to 47 days. Their courses were impressively similar for the first 1000 km, with three turtles tracked over different dates following indistinguishable paths for the first 300 km. Only the sixth turtle made some relatively short trips in different directions around Ascension. The tracks show that turtles (i) are able to maintain straight courses over long distances in the open sea; (ii) may perform exploratory movements in different directions; (iii) appropriately correct their course during the journey according to external information; and (iv) initially keep the same direction as the west–south–westerly flowing current, possibly guided by chemical cues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of previously published records shows that the modal size of juvenile loggerhead sea turtles (Caretta caretta) found around the United Kingdom (the area north of 49°N and east of 12°W) is a carapace length of 20.5 cm. These turtles are believed to originate from nesting beaches in North America (principally Florida). We estimated their trans-Atlantic drift time using data from satellite-tracked buoys and from a mathematical model and, hence, estimated that the modal age of these juvenile turtles was between 1.80 and 3.75 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution of 38 nests of loggerhead turtles (Caretta caretta) on beaches on Sanibel and Captiva islands, south-western Florida (26°26'N 82°16'W), and of 70 first digging attempts by green turtles (Chelonia mydas) on Ascension Island (7°57'S 14°22'W), was quantified. For loggerhead turtles on Sanibel and Captiva, nests were clumped close to the border between the open sand and the supra-littoral vegetation that backed the beaches. This spatial pattern of nests was closely reproduced by assuming simply that turtles crawled a random distance above the most recent high water line prior to digging. In contrast, green turtles on Ascension Island clumped their first digging attempts on the uneven beach above the springs high water line, crawling up to 80 m to reach this beach zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(1) Data for loggerhead turtles (Caretta caretta L.) nesting on the Greek island of Cephalonia were used to develop a model which predicted the optimum clutch size. (2) There was a positive linear relationship between the number of clutches into which eggs could be divided and the total time spent by a nesting turtle on the beach, and hence a negative relationship between the time invested on the beach per egg and clutch size. (3) A previous study indicated that energy expenditure for nesting turtles on land is very high, so there may be a selective pressure to maximize clutch size in order to minimize the energy expended per egg laid. As there appeared to be no counterselective pressures favouring small clutches, clutch size should be constrained by a female's egg-carryingc apacity,w hich in turn could be expected to be related to her body size. Hence, a positive relationship between clutch size and body size was predicted, and was found in the population under study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past 3 decades, the status of sea turtles and the need for their protection to aid population recovery have increasingly captured the interest of government agencies, non-governmental organisations (NGOs) and the general public worldwide. This interest has been matched by increased research attention, focusing on a wide variety of topics relating to sea turtle biology and ecology, together with the interrelations of sea turtles with the physical and natural environments. Although sea turtles have been better studied than most other marine fauna, management actions and their evaluation are often hindered by the lack of data on turtle biology, human–turtle interactions, turtle population status and threats. In an effort to inform effective sea turtle conservation a list of priority research questions was assembled based on the opinions of 35 sea turtle researchers from 13 nations working in fields related to turtle biology and/or conservation. The combined experience of the contributing researchers spanned the globe as well as many relevant disciplines involved in conservation research. An initial list of more than 200 questions gathered from respondents was condensed into 20 metaquestions and classified under 5 categories: reproductive biology, biogeography, population ecology, threats and conservation strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Species that have temperature-dependent sex determination (TSD) often produce highly skewed offspring sex ratios contrary to long-standing theoretical predictions. This ecological enigma has provoked concern that climate change may induce the production of single-sex generations and hence lead to population extirpation. All species of sea turtles exhibit TSD, many are already endangered, and most already produce sex ratios skewed to the sex produced at warmer temperatures (females). We tracked male loggerhead turtles (Caretta caretta) from Zakynthos, Greece, throughout the entire interval between successive breeding seasons and identified individuals on their breeding grounds, using photoidentification, to determine breeding periodicity and operational sex ratios. Males returned to breed at least twice as frequently as females. We estimated that the hatchling sex ratio of 70:30 female to male for this rookery will translate into an overall operational sex ratio (OSR) (i.e., ratio of total number of males vs females breeding each year) of close to 50:50 female to male. We followed three male turtles for between 10 and 12 months during which time they all traveled back to the breeding grounds. Flipper tagging revealed the proportion of females returning to nest after intervals of 1, 2, 3, and 4 years were 0.21, 0.38, 0.29, and 0.12, respectively (mean interval 2.3 years). A further nine male turtles were tracked for short periods to determine their departure date from the breeding grounds. These departure dates were combined with a photoidentification data set of 165 individuals identified on in-water transect surveys at the start of the breeding season to develop a statistical model of the population dynamics. This model produced a maximum likelihood estimate that males visit the breeding site 2.6 times more often than females (95%CI 2.1, 3.1), which was consistent with the data from satellite tracking and flipper tagging. Increased frequency of male breeding will help ameliorate female-biased hatchling sex ratios. Combined with the ability of males to fertilize the eggs of many females and for females to store sperm to fertilize many clutches, our results imply that effects of climate change on the viability of sea turtle populations are likely to be less acute than previously suspected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long distance migration occurs in a wide variety of taxa including birds, insects, fishes, mammals and reptiles. Here, we provide evidence for a new paradigm for the determinants of migration destination. As adults, sea turtles show fidelity to their natal nesting areas and then at the end of the breeding season may migrate to distant foraging sites. For a major rookery in the Mediterranean, we simulated hatchling drift by releasing 288 000 numerical particles in an area close to the nesting beaches. We show that the pattern of adult dispersion from the breeding area reflects the extent of passive dispersion that would be experienced by hatchlings. Hence, the prevailing oceanography around nesting areas may be crucial to the selection of foraging sites used by adult sea turtles. This environmental forcing may allow the rapid evolution of new migration destinations if ocean currents alter with climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim  Resources can shape patterns of habitat utilization. Recently a broad foraging dichotomy between oceanic and coastal sites has been revealed for loggerhead sea turtles (Caretta caretta). Since oceanic and coastal foraging sites differ in prey availability, we might expect a gross difference in home-range size across these habitats. We tested this hypothesis by equipping nine adult male loggerhead sea turtles with GPS tracking devices. Location  National Marine Park of Zakynthos (NMPZ) Greece, central and eastern Mediterranean (Adriatic, Ionian and Aegean seas). Methods  In 2007, 2008 and 2009, Fastloc GPS-Argos transmitters were attached to nine male loggerheads. In addition, a Sirtrack PTT unit was attached to one male in 2007. Four of the turtles were tracked on successive years. We filtered the GPS data to ensure comparable data volumes. Route consistency between breeding and foraging sites of the four re-tracked turtles was conducted. Foraging site home range areas and within site movement patterns were investigated by the fixed kernel density method. Results  Foraging home range size ranged between circa 10 km2 at neritic habitats (coastal and open-sea on the continental shelf) to circa 1000 km2 at oceanic sites (using 90% kernel estimates), the latter most probably reflecting sparsely distributed oceanic prey. Across different years individuals did not follow exactly the same migration routes, but did show fidelity to their previous foraging sites, whether oceanic or neritic, with accurate homing in the final stages of migration. Main conclusions  The broad distribution and diverse life-history strategies of this population could complicate the identification of priority marine protected areas beyond the core breeding site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1Reproductive fitness is often compromised at the margins of a species’ range due to sub-optimal conditions.2Set against this backdrop, the Mediterranean's largest loggerhead sea turtle (Caretta caretta) rookery at Zakynthos (Greece) presents a conundrum, being at a very high latitude for this species, yet hosting a high concentration of nesting.3We used visual surveys combined with global positioning system (GPS) tracking to show that at the start of the breeding season, individuals showed microhabitat selection, with females residing in transient patches of warm water. As the sea warmed in the summer, this selection was no longer evident.4As loggerhead turtles are ectothermic, this early season warm-water selection presumably speeds up egg maturation rates before oviposition, thereby allowing more clutches to be incubated when sand conditions are optimal during the summer.5Active selection of warm waters may allow turtles to initiate nesting at an earlier date.