916 resultados para SCALE STRUCTURE


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report on the discovery of a large-scale wall in the direction of Abell 22. Using photometric and spectroscopic data from the Las Campanas Observatory and Anglo-Australian Telescope Rich Cluster Survey, Abell 22 is found to exhibit a highly unusual and striking redshift distribution. We show, by examining the galaxy distributions both in redshift space and on the colour-magnitude plane, that Abell 22 exhibits a foreground wall-like structure. A search for other galaxies and clusters in the nearby region using the 2dF Galaxy Redshift Survey data base suggests that the wall-like structure is a significant large-scale, non-virialized filament which runs between two other Abell clusters either side of Abell 22. The filament stretches over at least > 40 h(-1) Mpc in length and 10 h(-1) Mpc in width at the redshift of Abell 22.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present results of our wide-field redshift survey of galaxies in a 285 square degree region of the Shapley Supercluster (SSC), based on a set of 10 529 velocity measurements (including 1201 new ones) on 8632 galaxies obtained from various telescopes and from the literature. Our data reveal that the main plane of the SSC (v approximate to 14 500 km s(-1)) extends further than previous estimates, filling the whole extent of our survey region of 12 degrees by 30 degrees on the sky (30 x 75 h(-1) Mpc). There is also a connecting structure associated with the slightly nearer Abell 3571 cluster complex (v approximate to 12 000 km s(-1)). These galaxies seem to link two previously identified sheets of galaxies and establish a connection with a third one at v = 15 000 km s(-1) near RA = 13(h). They also tend to fill the gap of galaxies between the foreground Hydra-Centaurus region and the more distant SSC. In the velocity range of the Shapley Supercluster (9000 km s(-1) < cz < 18 000 km s(-1)), we found redshift-space overdensities with b(j) < 17.5 of similar or equal to 5.4 over the 225 square degree central region and similar or equal to 3.8 in a 192 square degree region excluding rich clusters. Over the large region of our survey, we find that the intercluster galaxies make up 48 per cent of the observed galaxies in the SSC region and, accounting for the different completeness, may contribute nearly twice as much mass as the cluster galaxies. In this paper, we discuss the completeness of the velocity catalogue, the morphology of the supercluster, the global overdensity, and some properties of the individual galaxy clusters in the Supercluster.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The atomic scale structure of sodium borophosphates made by the sol-gel method is compared to those made by the melt-quench method. It is found that although the sol-gel generated materials have a higher tendency towards crystallization, they nevertheless show a qualitatively similar crystallization trend with composition to their melt-quench analogues; the progressive introduction of boron oxide into the phosphate network initially inhibits then promotes crystallization. At the composition associated with the most stable amorphous sodium borophosphate (20 mol% boron oxide), it is found that the atomic scale structure of the sol-gel synthesized network glass is almost identical to that of the corresponding melt-quenched one.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sol-gel-synthesized bioactive glasses may be formed via a hydrolysis condensation reaction, silica being introduced in the form of tetraethyl orthosilicate (TEOS), and calcium is typically added in the form of calcium nitrate. The synthesis reaction proceeds in an aqueous environment; the resultant gel is dried, before stabilization by heat treatment. These materials, being amorphous, are complex at the level of their atomic-scale structure, but their bulk properties may only be properly understood on the basis of that structural insight. Thus, a full understanding of their structure-property relationship may only be achieved through the application of a coherent suite of leading-edge experimental probes, coupled with the cogent use of advanced computer simulation methods. Using as an exemplar a calcia-silica sol-gel glass of the kind developed by Larry Hench, in the memory of whom this paper is dedicated, we illustrate the successful use of high-energy X-ray and neutron scattering (diffraction) methods, magic-angle spinning solid-state NMR, and molecular dynamics simulation as components to a powerful methodology for the study of amorphous materials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the north Atlantic subtropical gyre, the oceanic vertical structure of density is characterized by a region of rapid increase with depth. This layer is called the permanent pycnocline. The permanent pycnocline is found below a surface mode water ,which are ventilated every winter when penetrated locally by the mixed layer. Assessing the structure and variability of the permanent pycnocline is of a major interest in the understanding of the climate system because the pycnocline layer delimits important heat and anthropogenic reservoir. Moreover, the heat content structure translate into changes in the large scale stratification feature, such as the permanent pycnocline. We developed a new objective algorithm for the characterization of the large scale structure of the permanent pycnocline (OAC-P). Argo data have been used with OAC-P to provide a detailed description of the mean structure of the North-Atlantic subtropical pycnocline (e.g.: depth, thickness, temperature, salinity, density, potential vorticity). Results reveal a surprisingly complex structure with inhomogeneous properties. While the classical bowl shape of the pycnocline depth is captured, much more complex pycnocline structure emerges at the regional scale. In the southern recirculation gyre of the Gulf Stream Extension, the pycnocline is deep, thick, the maximum of stratification is found in the middle on the layer and follow an isopycnal surface. But local processes influence and modify this textbook description and the pycnocline is characterized by a vertically asymmetric structure and gradients in thermohaline properties. T/S distribution along the permanent pycnocline depth is complex and reveals a diversity of water masses resulting from mixing of different source waters. We will present the observed mean structure of the North-Atlantic subtropical permanent pycnocline and relate it to physical processes that constraint it.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We discuss the properties of homogeneous and isotropic flat cosmologies in which the present accelerating stage is powered only by the gravitationally induced creation of cold dark matter (CCDM) particles (Omega(m) = 1). For some matter creation rates proposed in the literature, we show that the main cosmological functions such as the scale factor of the universe, the Hubble expansion rate, the growth factor, and the cluster formation rate are analytically defined. The best CCDM scenario has only one free parameter and our joint analysis involving baryonic acoustic oscillations + cosmic microwave background (CMB) + SNe Ia data yields (Omega) over tilde = 0.28 +/- 0.01 (1 sigma), where (Omega) over tilde (m) is the observed matter density parameter. In particular, this implies that the model has no dark energy but the part of the matter that is effectively clustering is in good agreement with the latest determinations from the large- scale structure. The growth of perturbation and the formation of galaxy clusters in such scenarios are also investigated. Despite the fact that both scenarios may share the same Hubble expansion, we find that matter creation cosmologies predict stronger small scale dynamics which implies a faster growth rate of perturbations with respect to the usual Lambda CDM cosmology. Such results point to the possibility of a crucial observational test confronting CCDM with Lambda CDM scenarios through a more detailed analysis involving CMB, weak lensing, as well as the large-scale structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microgauss magnetic fields are observed in all galaxies at low and high redshifts. The origin of these intense magnetic fields is a challenging question in astrophysics. We show here that the natural plasma fluctuations in the primordial Universe (assumed to be random), predicted by the fluctuation - dissipation theorem, predicts similar to 0.034 mu G fields over similar to 0.3 kpc regions in galaxies. If the dipole magnetic fields predicted by the fluctuation- dissipation theorem are not completely random, microgauss fields over regions greater than or similar to 0.34 kpc are easily obtained. The model is thus a strong candidate for resolving the problem of the origin of magnetic fields in less than or similar to 10(9) years in high redshift galaxies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims. An analytical solution for the discrepancy between observed core-like profiles and predicted cusp profiles in dark matter halos is studied. Methods. We calculate the distribution function for Navarro-Frenk-White halos and extract energy from the distribution, taking into account the effects of baryonic physics processes. Results. We show with a simple argument that we can reproduce the evolution of a cusp to a flat density profile by a decrease of the initial potential energy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that bifurcations in chaotic scattering manifest themselves through the appearance of an infinitely fine-scale structure of singularities in the cross section. These ""rainbow singularities"" are created in a cascade, which is closely related to the bifurcation cascade undergone by the set of trapped orbits (the chaotic saddle). This cascade provides a signature in the differential cross section of the complex pattern of bifurcations of orbits underlying the transition to chaotic scattering. We show that there is a power law with a universal coefficient governing the sequence of births of rainbow singularities and we verify this prediction by numerical simulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultra-high-energy cosmic rays (UHECRs), with energies above similar to 6 x 10(19) eV, seem to show a weak correlation with the distribution of matter relatively near to us in the universe. It has earlier been proposed that UHECRs could be accelerated in either the nucleus or the outer lobes of the nearby radio galaxy Cen A. We show that UHECR production at a spatially intermediate location about 15 kpc northeast from the nucleus, where the jet emerging from the nucleus is observed to strike a large star-forming shell of gas, is a plausible alternative. A relativistic jet is capable of accelerating lower energy heavy seed cosmic rays (CRs) to UHECRs on timescales comparable to the time it takes the jet to pierce the large gaseous cloud. In this model, many CRs arising from a starburst, with a composition enhanced in heavy elements near the knee region around PeV, are boosted to ultra-high energies by the relativistic shock of a newly oriented jet. This model matches the overall spectrum shown by the Auger data and also makes a prediction for the chemical composition as a function of particle energy. We thus predict an observable anisotropy in the composition at high energy in the sense that lighter nuclei should preferentially be seen toward the general direction of Cen A. Taking into consideration the magnetic field models for the Galactic disk and a Galactic magnetic wind, this scenario may resolve the discrepancy between HiRes and Auger results concerning the chemical composition of UHECRs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Fornax Spectroscopic Survey will use the Two degree Field spectrograph (2dF) of the Angle-Australian Telescope to obtain spectra for a complete sample of all 14000 objects with 16.5 less than or equal to b(j) less than or equal to 19.7 in a 12 square degree area centred on the Fornax Cluster. The aims of this project include the study of dwarf galaxies in the cluster (both known low surface brightness objects and putative normal surface brightness dwarfs) and a comparison sample of background field galaxies. We will also measure quasars and other active galaxies, any previously unrecognised compact galaxies and a large sample of Galactic stars. By selecting all objects-both stars and galaxies-independent of morphology, we cover a much larger range of surface brightness and scale size than previous surveys. In this paper we first describe the design of the survey. Our targets are selected from UK Schmidt Telescope sky survey plates digitised by the Automated Plate Measuring (APM) facility. We then describe the photometric and astrometric calibration of these data and show that the APM astrometry is accurate enough for use with the 2dF. We also describe a general approach to object identification using cross-correlations which allows us to identify and classify both stellar and galaxy spectra. We present results from the first 2dF field. Redshift distributions and velocity structures are shown for all observed objects in the direction of Fornax, including Galactic stars? galaxies in and around the Fornax Cluster, and for the background galaxy population. The velocity data for the stars show the contributions from the different Galactic components, plus a small tail to high velocities. We find no galaxies in the foreground to the cluster in our 2dF field. The Fornax Cluster is clearly defined kinematically. The mean velocity from the 26 cluster members having reliable redshifts is 1560 +/- 80 km s(-1). They show a velocity dispersion of 380 +/- 50 km s(-1). Large-scale structure can be traced behind the cluster to a redshift beyond z = 0.3. Background compact galaxies and low surface brightness galaxies are found to follow the general galaxy distribution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first deep catalog of the H I Parkes All Sky Survey (HIPASS) is presented, covering the south celestial cap (SCC) region. The SCC area is similar to2400 deg(2) and covers delta < -62&DEG;. The average rms noise for the survey is 13 mJy beam(-1). Five hundred thirty-six galaxies have been cataloged according to their neutral hydrogen content, including 114 galaxies that have no previous cataloged optical counterpart. This is the largest sample of galaxies from a blind H I survey to date. Most galaxies in optically unobscured regions of sky have a visible optical counterpart; however, there is a small population of low-velocity H I clouds without visible optical counterparts whose origins and significance are unclear. The rms accuracy of the HIPASS positions is found to be 1.'9. The H I mass range of galaxies detected is from &SIM;10(6) to &SIM;10(11) M-.. There are a large number of late-type spiral galaxies in the SCC sample (66%), compared with 30% for optically selected galaxies from the same region in the NASA Extragalactic Database. The average ratio of H I mass to B luminosity of the sample increases according to optical type, from 1.8 M-./L-. for early types to 3.2 M-./L-. for late-type galaxies. The H I-detected galaxies tend to follow the large-scale structure traced by galaxies found in optical surveys. From the number of galaxies detected in this region of sky, we predict the full HIPASS catalog will contain &SIM;5000 galaxies, to a peak flux density limit of &SIM;39 mJy (3 σ), although this may be a conservative estimate as two large voids are present in the region. The H I mass function for this catalog is presented in a subsequent paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The necessary information to distinguish a local inhomogeneous mass density field from its spatial average on a compact domain of the universe can be measured by relative information entropy. The Kullback-Leibler (KL) formula arises very naturally in this context, however, it provides a very complicated way to compute the mutual information between spatially separated but causally connected regions of the universe in a realistic, inhomogeneous model. To circumvent this issue, by considering a parametric extension of the KL measure, we develop a simple model to describe the mutual information which is entangled via the gravitational field equations. We show that the Tsallis relative entropy can be a good approximation in the case of small inhomogeneities, and for measuring the independent relative information inside the domain, we propose the R\'enyi relative entropy formula.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In inflationary cosmological models driven by an inflaton field the origin of the primordial inhomogeneities which are responsible for large-scale structure formation are the quantum fluctuations of the inflaton field. These are usually calculated using the standard theory of cosmological perturbations, where both the gravitational and the inflaton fields are linearly perturbed and quantized. The correlation functions for the primordial metric fluctuations and their power spectrum are then computed. Here we introduce an alternative procedure for calculating the metric correlations based on the Einstein-Langevin equation which emerges in the framework of stochastic semiclassical gravity. We show that the correlation functions for the metric perturbations that follow from the Einstein-Langevin formalism coincide with those obtained with the usual quantization procedures when the scalar field perturbations are linearized. This method is explicitly applied to a simple model of chaotic inflation consisting of a Robertson-Walker background, which undergoes a quasi-de Sitter expansion, minimally coupled to a free massive quantum scalar field. The technique based on the Einstein-Langevin equation can, however, deal naturally with the perturbations of the scalar field even beyond the linear approximation, as is actually required in inflationary models which are not driven by an inflaton field, such as Starobinsky¿s trace-anomaly driven inflation or when calculating corrections due to nonlinear quantum effects in the usual inflaton driven models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The psychometric properties of the Personal Wellbeing Index are analyzed on a Spanish and Portuguese adolescent sample. We test the reliability of the scale using Cronbach’s alpha. And complementarily we analyze the item-total correlations in the different wellbeing domains included. We execute an exploratory factor analysis (principal components) and a multigroup Confirmatory Factor Analysis (CFA). The results show that Cronbach’s alpha is 0.79 for the Chilean version and in the Brazilian version is 0.78 confirming adequate levels of reliability found in previous studies. Correlations between fields of well-being shows values ranging between 0.224 and 0.496 for Chile and from 0.24 to 0.46 for Brazil. The results are similar to those obtained in other countries. The monofactorial structure of the scale is cinfirmed, also the adjustment to the scale structure to the data of the two samples and the comparability of means of global indices. The results suggest the existence of other well-being domains that had not been considered in the original proposal of the scale