943 resultados para S6 KINASE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The protein p70s6k/p85s6k lies on a mitogen-stimulated signaling pathway and plays a key role in G1 progression of the cell cycle. Activation of this enzyme is mediated by a complex set of phosphorylation events, which has largely contributed to the difficulty in identifying the upstream kinases that mediate p70s6k activation. Genetics has proved a powerful complementary approach for such problems, providing an alternative means to identify components of signaling cascades and their functional end targets. As a first step toward implementing such an approach, we have cloned cDNAs encoding the Drosophila melanogaster p70s6k homolog (Dp70s6k). Dp70s6k is encoded by a single gene, which generates three mRNA transcripts and exhibits an overall identity of 78% in the catalytic domain with its mammalian counterpart. Importantly, this high identity extends beyond the catalytic domain to the N terminus, linker region, and the autoinhibitory domain. Furthermore, all the critical phosphorylation sites required for mammalian p70s6k activation are conserved within these same domains of Dp70s6k. Chief amongst these conserved sites are those associated with the selective rapamycin-induced p70s6k dephosphorylation and inactivation. Consistent with this observation, analysis of total S6 kinase activity in fractionated Drosophila Schneider line 2 cell extracts reveals two peaks of activity, only one of which is rapamycin sensitive. By employing a monospecific polyclonal antibody generated against Dp70s6k, we show that the cloned DP70s6k cDNA has identity with only the rapamycin sensitive peak, suggesting that this biological system would be useful in determining not only the mechanism of p70s6k activation, but also in elucidating the mechanism by which rapamycin acts to inhibit cell growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proliferation of activated hepatic stellate cells (HSC) is an important event in the development of hepatic fibrosis. Insulin-like growth factor-1 (IGF-1) has been shown to be mitogenic for HSC, but the intracellular signaling pathways involved have not been fully characterized. Thus, the aims of the current study were to examine the roles of the extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (P13-K) and p70-S6 kinase (p70-S6-K) signaling pathways in IGF-1- and platelet-derived growth factor (PDGF)-induced mitogenic signaling of HSC and to examine the potential crosstalk between these pathways. Both IGF-1 and PDGF increased ERK, P13-K and p70-S6-K activity. When evaluating potential crosstalk between these signaling pathways, we observed that P13-K is required for p70-S6-K activation by IGF-1 and PDGF, and is partially responsible for PDGF-induced ERK activation. PDGF and IGF-1 also increased the levels of cyclin D1 and phospho-glycogen synthase kinase-30. Coordinate activation of ERK, P13-K and p70-S6-K is important for perpetuating the activated state of HSC during fibrogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To investigate the mechanism by which beta-hydroxy-beta-methylbutyrate (HMB) attenuates the depression of protein synthesis in the skeletal muscle of cachectic mice, a study has been carried out in murine myotubes in the presence of proteolysis-inducing factor (PIF). PIF inhibited protein synthesis by 50% within 4 h, and this was effectively attenuated by HMB (25-50 muM). HMB (50 muM) alone stimulated protein synthesis, and this was attenuated by rapamycin (27 nM), an inhibitor of mammalian target of rapamycin (mTOR). Further evidence for an involvement of this pathway was shown by an increased phosphorylation of mTOR, the 70-kDa ribosomal S6 kinase (p70(S6k)), and initiation factor 4E-binding protein (4E-BP1) and an increased association of eukaryotic initiation factor 2 (eIF4E) with eIF4G. PIF alone induced a transient (1-2 h) stimulation of phosphorylation of mTOR and p70(S6k). However, in the presence of HMB, phosphorylation of mTOR, p70(S6k), and 4E-BP1 was increased, and inactive 4E-BP1-eIF4E complex was reduced, whereas the active eIF4G.eIF4E complex was increased, suggesting continual stimulation of protein synthesis. HMB alone reduced phosphorylation of elongation factor 2, but this effect was not seen in the presence of PIF. PIF induced autophosphorylation of the double-strand RNA-dependent protein kinase (PKR), leading to phosphorylation of eIF2 on the alpha-subunit, which would inhibit protein synthesis. However, in the presence of HMB, phosphorylation of PKR and eIF2alpha was attenuated, and this was also observed in skeletal muscle of cachectic mice administered HMB (0.25 g/kg). These results suggest that HMB attenuates the depression of protein synthesis by PIF in myotubes through multiple mechanisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study, the BCAAs (branched-chain amino acids) leucine and valine caused a significant suppression in the loss of body weight in mice bearing a cachexia-inducing tumour (MAC16), producing a significant increase in skeletal muscle wet weight, through an increase in protein synthesis and a decrease in degradation. Leucine attenuated the increased phosphorylation of PKR (double-stranded-RNA-dependent protein kinase) and eIF2α (eukaryotic initiation factor 2α) in skeletal muscle of mice bearing the MAC16 tumour, due to an increased expression of PP1 (protein phosphatase 1). Weight loss in mice bearing the MAC16 tumour was associated with an increased amount of eIF4E bound to its binding protein 4E-BP1 (eIF4E-binding protein 1), and a progressive decrease in the active eIF4G-eIF4E complex due to hypophosphorylation of 4E-BP1. This may be due to a reduction in the phosphorylation of mTOR (mammalian target of rapamycin), which may also be responsible for the decreased phosphorylation of p70S6k (70 kDa ribosomal S6 kinase). There was also a 5-fold increase in the phosphorylation of eEF2 (eukaryotic elongation factor 2), which would also decrease protein synthesis through a decrease in translation elongation. Treatment with leucine increased phosphorylation of mTOR and p70S6k, caused hyperphosphorylation of 4E-BP1, reduced the amount of 4E-BP1 associated with eIF4E and caused an increase in the eIF4G-eIF4E complex, together with a reduction in phosphorylation of eEF2. These changes would be expected to increase protein synthesis, whereas a reduction in the activation of PKR would be expected to attenuate the increased protein degradation. © The Authors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Building and maintaining muscle is critical to the quality of life for adults and elderly. Physical activity and nutrition are important factors for long-term muscle health. In particular, dietary protein – including protein distribution and quality – are under-appreciated determinants of muscle health for adults. The most unequivocal evidence for the benefit of optimal dietary protein at individual meals is derived from studies of weight management. During the catabolic condition of weight loss, higher protein diets attenuate loss of lean tissue and partition weight loss to body fat when compared with commonly recommended high carbohydrate, low protein diets. Muscle protein turnover is a continuous process in which proteins are degraded, and replaced by newly synthesized proteins. Muscle growth occurs when protein synthesis exceeds protein degradation. Regulation of protein synthesis is complex, with multiple signals influencing this process. The mammalian target of rapamycin (mTORC1) pathway has been identified as a particularly important regulator of protein synthesis, via stimulation of translation initiation. Key regulatory points of translation initiation effected by mTORC1 include assembly of the eukaryotic initiation factor 4F (eIF4F) complex and phosphorylation of the 70 kilodalton ribosomal protein S6 kinase (S6K1). Assembly of the eIF4F initiation complex involves phosphorylation of the inhibitory eIF4E binding protein-1 (4E-BP1), which releases the initiation factor eIF4E and allows it to bind with eIF4G. Binding of eIF4E with eIF4G promotes preparation of the mRNA for binding to the 43S pre-initiation complex. Consumption of the amino acid leucine (Leu) is a key factor determining the anabolic response of muscle protein synthesis (MPS) and mTORC1 signaling to a meal. Research from this dissertation demonstrates that the peak activation of MPS following a complete meal is proportional to the Leu content of a meal and its ability to elevate plasma Leu. Leu has also been implicated as an inhibitor of muscle protein degradation (MPD). In particular, there is evidence suggesting that in muscle wasting conditions Leu supplementation attenuates expression of the ubiquitin-proteosome pathway, which is the primary mode of intracellular protein degradation. However, this is untested in healthy, physiological feeding models. Therefore, an experiment was performed to see if feeding isonitrogenous protein sources with different Leu contents to healthy adult rats would differentially impact ubiquitin-proteosome (protein degradation) outcomes; and if these outcomes are related to the meal responses of plasma Leu. Results showed that higher Leu diets were able to attenuate total proteasome content but had no effect on ubiquitin proteins. This research shows that dietary Leu determines postprandial muscle anabolism. In a parallel line of research, the effects of dietary Leu on changes in muscle mass overtime were investigated. Animals consuming higher Leu diets had larger gastrocnemius muscle weights; furthermore, gastrocnemius muscle weights were correlated with postprandial changes in MPS (r=0.471, P<0.01) and plasma Leu (r=0.400, P=0.01). These results show that the effect of Leu on ubiquitin-proteosome pathways is minimal for healthy adult rats consuming adequate diets. Thus, long-term changes in muscle mass observed in adult rats are likely due to the differences in MPS, rather than MPD. Factors determining the duration of Leu-stimulated MPS were further investigated. Despite continued elevations in plasma Leu and associated translation initiation factors (e.g., S6K1 and 4E-BP1), MPS returned to basal levels ~3 hours after a meal. However, administration of additional nutrients in the form of carbohydrate, Leu, or both ~2 hours after a meal was able to extend the elevation of MPS, in a time and dose dependent manner. This effect led to a novel discovery that decreases in translation elongation activity was associated with increases in activity of AMP kinase, a key cellular energy sensor. This research shows that the Leu density of dietary protein determines anabolic signaling, thereby affecting cellular energetics and body composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

S6 kinases (S6Ks) act to integrate nutrient and insulin signaling pathways and, as such, function as positive effectors in cell growth and organismal development. However, they also have been shown to play a key role in limiting insulin signaling and in mediating the autophagic response. To identify novel regulators of S6K signaling, we have used a Drosophila-based, sensitized, gain-of-function genetic screen. Unexpectedly, one of the strongest enhancers to emerge from this screen was the nuclear receptor (NR), Drosophila hormone receptor 3 (DHR3), a critical constituent in the coordination of Drosophila metamorphosis. Here we demonstrate that DHR3, through dS6K, also acts to regulate cell-autonomous growth. Moreover, we show that the ligand-binding domain (LBD) of DHR3 is essential for mediating this response. Consistent with these findings, we have identified an endogenous DHR3 isoform that lacks the DBD. These results provide the first molecular link between the dS6K pathway, critical in controlling nutrient-dependent growth, and that of DHR3, a major mediator of ecdysone signaling, which, acting together, coordinate metamorphosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In response to stress, the heart undergoes a remodeling process associated with cardiac hypertrophy that eventually leads to heart failure. A-kinase anchoring proteins (AKAPs) have been shown to coordinate numerous prohypertrophic signaling pathways in cultured cardiomyocytes. However, it remains to be established whether AKAP-based signaling complexes control cardiac hypertrophy and remodeling in vivo. In the current study, we show that AKAP-Lbc assembles a signaling complex composed of the kinases PKN, MLTK, MKK3, and p38α that mediates the activation of p38 in cardiomyocytes in response to stress signals. To address the role of this complex in cardiac remodeling, we generated transgenic mice displaying cardiomyocyte-specific overexpression of a molecular inhibitor of the interaction between AKAP-Lbc and the p38-activating module. Our results indicate that disruption of the AKAP-Lbc/p38 signaling complex inhibits compensatory cardiomyocyte hypertrophy in response to aortic banding-induced pressure overload and promotes early cardiac dysfunction associated with increased myocardial apoptosis, stress gene activation, and ventricular dilation. Attenuation of hypertrophy results from a reduced protein synthesis capacity, as indicated by decreased phosphorylation of 4E-binding protein 1 and ribosomal protein S6. These results indicate that AKAP-Lbc enhances p38-mediated hypertrophic signaling in the heart in response to abrupt increases in the afterload.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MCT2 is the main neuronal monocarboxylate transporter essential for facilitating lactate and ketone body utilization as energy substrates. Our study reveals that treatment of cultured cortical neurons with insulin and IGF-1 led to a striking enhancement of MCT2 immunoreactivity in a time- and concentration-dependent manner. Surprisingly, neither insulin nor IGF-1 affected MCT2 mRNA expression, suggesting that regulation of MCT2 protein expression occurs at the translational rather than the transcriptional level. Investigation of the putative signalling pathways leading to translation activation revealed that insulin and IGF-1 induced p44- and p42 MAPK, Akt and mTOR phosphorylation. S6 ribosomal protein, a component of the translational machinery, was also strongly activated by insulin and IGF-1. Phosphorylation of p44- and p42 MAPK was blocked by the MEK inhibitor PD98058, while Akt phosphorylation was abolished by the PI3K inhibitor LY294002. Phosphorylation of mTOR and S6 was blocked by the mTOR inhibitor rapamycin. In parallel, it was observed that LY294002 and rapamycin almost completely blocked the effects of insulin and IGF-1 on MCT2 protein expression, whereas PD98059 and SB202190 (a p38K inhibitor) had no effect on insulin-induced MCT2 expression and only a slight effect on IGF-1-induced MCT2 expression. At the subcellular level, a significant increase in MCT2 protein expression within an intracellular pool was observed while no change at the cell surface was apparent. As insulin and IGF-1 are involved in synaptic plasticity, their effect on MCT2 protein expression via an activation of the PI3K-Akt-mTOR-S6K pathway might contribute to the preparation of neurons for enhanced use of nonglucose energy substrates following altered synaptic efficacy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies in non-cardiomyocytic cells have shown that phosphorylation of the Bcl-2 family protein Bad on Ser-112, Ser-136 and Ser-155 decreases its pro-apoptotic activity. Both phenylephrine (100 microM) and the cell membrane-permeating cAMP analog, 8-(4-chlorophenylthio)-cAMP (100 microM), protected against 2-deoxy-D-glucose-induced apoptosis in neonatal rat cardiac myocytes as assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). In cardiac myocytes, phenylephrine primarily stimulates the alpha-adrenoceptor, but, at high concentrations (100 microM), it also increases the activity of the cAMP-dependent protein kinase, protein kinase A (PKA) through the beta-adrenoceptor. Phenylephrine (100 microM) promoted rapid phosphorylation of Bad(Ser-112) and Bad(Ser-155), though we were unable to detect phosphorylation of Bad(Ser-136). Phosphorylation of Bad(Ser-112) was antagonized by either prazosin or propranolol, indicating that this phosphorylation required stimulation of both alpha(1)- and beta-adrenoceptors. Phosphorylation of Bad(Ser-155) was antagonized only by propranolol and was thus mediated through the beta-adrenoceptor. Inhibitor studies and partial purification of candidate kinases by fast protein liquid chromatography showed that the p90 ribosomal S6 kinases, p90RSK2/3 [which are activated by the extracellular signal-regulated kinases 1 and 2 (ERK1/2)] directly phosphorylated Bad(Ser-112), whereas the PKA catalytic subunit directly phosphorylated Bad(Ser-155). However, efficient phosphorylation of Bad(Ser-112) also required PKA activity. These data suggest that, although p90RSK2/3 phosphorylate Bad(Ser-112) directly, phosphorylation of this site is enhanced by phosphorylation of Bad(Ser-155). These phosphorylations potentially diminish the pro-apoptotic activity of Bad and contribute to the cytoprotective effects of phenylephrine and 8-(4-chlorophenylthio)-cAMP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In response to stress, the heart undergoes a remodeling process associated with cardiac hypertrophy that eventually leads to heart failure. A-kinase anchoring proteins (AKAPs) have been shown to coordinate numerous prohypertrophic signaling pathways in cultured cardiomyocytes. However, it remains to be established whether AKAP-based signaling complexes control cardiac hypertrophy and remodeling in vivo. In the current study, we show that AKAP-Lbc assembles a signaling complex composed of the kinases PKN, MLTK, MKK3, and p38α that mediates the activation of p38 in cardiomyocytes in response to stress signals. To address the role of this complex in cardiac remodeling, we generated transgenic mice displaying cardiomyocyte-specific overexpression of a molecular inhibitor of the interaction between AKAP-Lbc and the p38-activating module. Our results indicate that disruption of the AKAP-Lbc/p38 signaling complex inhibits compensatory cardiomyocyte hypertrophy in response to aortic banding-induced pressure overload and promotes early cardiac dysfunction associated with increased myocardial apoptosis, stress gene activation, and ventricular dilation. Attenuation of hypertrophy results from a reduced protein synthesis capacity, as indicated by decreased phosphorylation of 4E-binding protein 1 and ribosomal protein S6. These results indicate that AKAP-Lbc enhances p38-mediated hypertrophic signaling in the heart in response to abrupt increases in the afterload.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphoinositide-dependent kinase-1 (PDK-1) is a central mediator of the cell signaling between phosphoinositide 3-kinase (PI3K) and various intracellular serine/threonine kinases including Akt/protein kinase B (PKB), p70 S6 kinases, and protein kinase C. Recent studies with cell transfection experiments have implied that PDK-1 may be involved in various cell functions including cell growth and apoptosis. However, despite its pivotal role in cellular signalings, the in vivo functions of PDK-1 in a multicellular system have rarely been investigated. Here, we have isolated Drosophila PDK-1 (dPDK-1) mutants and characterized the in vivo roles of the kinase. Drosophila deficient in the dPDK-1 gene exhibited lethality and an apoptotic phenotype in the embryonic stage. Conversely, overexpression of dPDK-1 increased cell and organ size in a Drosophila PI3K-dependent manner. dPDK-1 not only could activate Drosophila Akt/PKB (Dakt1), but also substitute the in vivo functions of its mammalian ortholog to activate Akt/PKB. This functional interaction between dPDK-1 and Dakt1 was further confirmed through genetic analyses in Drosophila. On the other hand, cAMP-dependent protein kinase, which has been proposed as a possible target of dPDK-1, did not interact with dPDK-1. In conclusion, our findings provide direct evidence that dPDK-1 regulates cell growth and apoptosis during Drosophila development via the PI3K-dependent signaling pathway and demonstrate our Drosophila system to be a powerful tool for elucidating the in vivo functions and targets of PDK-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential gene expression analysis by suppression subtractive hybridization with correlation to the metabolic pathways involved in chronic myeloid leukemia (CML) may provide a new insight into the pathogenesis of CML. Among the overexpressed genes found in CML at diagnosis are SEPT5, RUNX1, MIER1, KPNA6 and FLT3, while PAN3, TOB1 and ITCH were decreased when compared to healthy volunteers. Some genes were identified and involved in CML for the first time, including TOB1, which showed a low expression in patients with CML during tyrosine kinase inhibitor treatment with no complete cytogenetic response. In agreement, reduced expression of TOB1 was also observed in resistant patients with CML compared to responsive patients. This might be related to the deregulation of apoptosis and the signaling pathway leading to resistance. Most of the identified genes were related to the regulation of nuclear factor κB (NF-κB), AKT, interferon and interleukin-4 (IL-4) in healthy cells. The results of this study combined with literature data show specific gene pathways that might be explored as markers to assess the evolution and prognosis of CML as well as identify new therapeutic targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human Neks are a conserved protein kinase family related to cell cycle progression and cell division and are considered potential drug targets for the treatment of cancer and other pathologies. We screened the activation loop mutant kinases hNek1 and hNek2, wild-type hNek7, and five hNek6 variants in different activation/phosphorylation statesand compared them against 85 compounds using thermal shift denaturation. We identified three compounds with significant Tm shifts: JNK Inhibitor II for hNek1(Δ262-1258)-(T162A), Isogranulatimide for hNek6(S206A), andGSK-3 Inhibitor XIII for hNek7wt. Each one of these compounds was also validated by reducing the kinases activity by at least 25%. The binding sites for these compounds were identified by in silico docking at the ATP-binding site of the respective hNeks. Potential inhibitors were first screened by thermal shift assays, had their efficiency tested by a kinase assay, and were finally analyzed by molecular docking. Our findings corroborate the idea of ATP-competitive inhibition for hNek1 and hNek6 and suggest a novel non-competitive inhibition for hNek7 in regard to GSK-3 Inhibitor XIII. Our results demonstrate that our approach is useful for finding promising general and specific hNekscandidate inhibitors, which may also function as scaffolds to design more potent and selective inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants are sessile organisms and have evolved to tolerate a constantly changing environment. After the onset of different stress conditions, calcineurin B-like (CBL) proteins can sense calcium signals and activate CBL-interacting protein kinase (CIPK) proteins, which can phosphorylate downstream proteins to reestablish plant homeostasis. Previous studies in the bioenergy crop sugarcane showed that the ScCIPK8 gene is induced by drought stress and is also related to sucrose content. Here, we have characterized the protein-protein interactions of ScCIPK8 with six CBL proteins (ScCBL1, ScCBL2, ScCBL3, ScCBL6, ScCBL9, and ScCBL10). Yeast two-hybrid assays showed that ScCIPK8 interacts with ScCBL1, ScCBL3, and ScCBL6. Bimolecular fluorescence complementation assays confirmed in planta the interactions that were observed in yeast cells. These findings give insights on the regulatory networks related to sugar accumulation and drought stress responses in sugarcane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Chronic Chagas disease cardiomyopathy (CCC) is an inflammatory dilated cardiomyopathy with a worse prognosis than other cardiomyopathies. CCC occurs in 30 % of individuals infected with Trypanosoma cruzi, endemic in Latin America. Heart failure is associated with impaired energy metabolism, which may be correlated to contractile dysfunction. We thus analyzed the myocardial gene and protein expression, as well as activity, of key mitochondrial enzymes related to ATP production, in myocardial samples of end-stage CCC, idiopathic dilated (IDC) and ischemic (IC) cardiomyopathies. Methodology/Principal Findings: Myocardium homogenates from CCC (N = 5), IC (N = 5) and IDC (N = 5) patients, as well as from heart donors (N = 5) were analyzed for protein and mRNA expression of mitochondrial creatine kinase (CKMit) and muscular creatine kinase (CKM) and ATP synthase subunits aplha and beta by immunoblotting and by real-time RT-PCR. Total myocardial CK activity was also assessed. Protein levels of CKM and CK activity were reduced in all three cardiomyopathy groups. However, total CK activity, as well as ATP synthase alpha chain protein levels, were significantly lower in CCC samples than IC and IDC samples. CCC myocardium displayed selective reduction of protein levels and activity of enzymes crucial for maintaining cytoplasmic ATP levels. Conclusions/Significance: The selective impairment of the CK system may be associated to the loss of inotropic reserve observed in CCC. Reduction of ATP synthase alpha levels is consistent with a decrease in myocardial ATP generation through oxidative phosphorylation. Together, these results suggest that the energetic deficit is more intense in the myocardium of CCC patients than in the other tested dilated cardiomyopathies.