936 resultados para Rotating disk electrodes
Resumo:
Pós-graduação em Química - IQ
Resumo:
Aluminum Alloys are widely used as structural materials in the aerospace industry due to low weight, high mechanical strength and enduring corrosion resistance. Their resistance to corrosion is attributed to the rapidly formed stable oxide film (Al2O3) which spontaneously forms itself on the surface of the material. However, in the presence of aggressive ions, such as halide, Aluminum Alloys are subject to a localized process of corrosion. The electrochemical behavior of 7081-T73511 and 7050-T7451 Aluminum Alloys employed in the aerospace industry was investigated using a 0.6 M NaCl solution under the conditions of a controlled mass transport employing a rotating disk electrode. The theoretical limiting current density was determined by the Kouteki-Levich equation. The results confirmed that the inter-metallic Al7Cu2Fe acts as preferential cathode generating the galvanic coupling and the dissolution of the Aluminummatrix around it.
Resumo:
The barred spiral galaxy M83 (NGC5236) has been observed in the 12CO J=1–0 and J=2–1 millimetre lines with the Swedish-ESO Submillimetre Telescope (SEST). The sizes of the CO maps are 100×100, and they cover the entire optical disk. The CO emission is strongly peaked toward the nucleus. The molecular spiral arms are clearly resolved and can be traced for about 360º. The total molecular gas mass is comparable to the total Hi mass, but H2 dominates in the optical disk. Iso-velocity maps show the signature of an inclined, rotating disk, but also the effects of streaming motions along the spiral arms. The dynamical mass is determined and compared to the gas mass. The pattern speed is determined from the residual velocity pattern, and the locations of various resonances are discussed. The molecular gas velocity dispersion is determined, and a trend of decreasing dispersion with increasing galactocentric radius is found. A total gas (H2+Hi+He) mass surface density map is presented, and compared to the critical density for star formation of an isothermal gaseous disk. The star formation rate (SFR) in the disk is estimated using data from various star formation tracers. The different SFR estimates agree well when corrections for extinctions, based on the total gas mass map, are made. The radial SFR distribution shows features that can be associated with kinematic resonances. We also find an increased star formation efficiency in the spiral arms. Different Schmidt laws are fitted to the data. The star formation properties of the nuclear region, based on high angular resolution HST data, are also discussed.
Resumo:
Die Detektion von Bewegung stellt eine der fundamentalsten Fähigkeiten der visuellen Wahrnehmung dar. Um zu klären, ob das System zur Bewegungswahrnehmung Eingang nur durch einen Zapfentyp erhält, oder ob eine Kombination von verschiedenen Zapfentypen vorliegt, wurde eine rotierende zwei-armige archimedische Spiralscheibe verwendet (reale Bewegung), bei der sich Spirale und Hintergrund farblich unterschieden. Durch Veränderung der Intensität farbiger Leuchtstoffröhren konnte eine Beleuchtungssituation geschaffen werden, bei der die (radiale) Bewegung der Spirale nicht mehr wahrgenommen werden konnte, obwohl Spirale und Hintergrund farblich verschieden waren. Die Bestimmung der Zapfenerregungen im 3-D Rezeptorraum ließ einen Beitrag sowohl des L– als auch des M-Zapfens bei normalsichtigen Trichromaten (dominiert durch L), jedoch einen alleinigen Beitrag des M-Zapfens bei Protanopen erkennen. Die Ermittlung der spektralen Empfindlichkeit basierend auf einer Vektor Analyse im 3D-Rezeptorraum zeigte schließlich, dass dem neuronalen Bewegungsdetektor ein additiver Beitrag des L- und M-Zapfens, in Übereinstimmung mit der Hellempfindlichkeitsfunktion (Vλ), zugrunde liegt. Als Ergebnis schreiben wir die Detektion von Objektbewegung einem farbenblinden Mechanismus zu. Es ist sehr wahrscheinlich, dass der Magnozelluläre-Kanal das neuronale Substrat dieses Bewegungsdetektors repräsentiert.
Resumo:
The recent availability of multi-wavelength data revealed the presence of large reservoirs of warm and cold gas and dust in the innermost regions of the majority of massive elliptical galaxies. To prove an internal origin of cold and warm gas, the investigation of the spatially distributed cooling process which occurs because of non-linear density perturbations and subsequent thermal instabilities is of crucial importance. The first goal of this work of thesis is to investigate the internal origin of warm and cold phases. Numerical simulations are the powerful tool of analysis. The way in which a spatially distributed cooling process originates has been examined and the off-centre amount of gas mass which cools when different and differently characterized AGN feedback mechanisms operate has been quantified. This thesis demonstrates that the aforementioned non-linear density perturbations originate and develop from AGN feedback mechanisms in a natural fashion. An internal origin of the warm phase from the once hot gas is shown to be possible. Computed velocity dispersions of ionized and hot gas are similar. The cold gas as well can originate from the cooling process: indeed, it has been estimated that the surrounding stellar radiation, which is one of the most feasible sources of ionization of the warm gas, does not manage to keep ionized all the gas at 10^4 K. Therefore, cooled gas does undergo a further cooling which can lead the warm phase to lower temperatures. However, the gas which has cooled from the hot phase is expected to be dustless; nonetheless, a large fraction of early type galaxies has detectable dust in their cores, both concentrated in filamentary and disky structures and spread over larger regions. Therefore a regularly rotating disk of cold and dusty gas has been included in the simulations. A new quantitative investigation of the spatially distributed cooling process has therefore been essential: the contribution of the included amount of dust which is embedded in the cold gas does have a role in promoting and enhancing the cooling. The fate of dust which was at first embedded in cold gas has been investigated. The role of AGN feedback mechanisms in dragging (if able) cold and dusty gas from the core of massive ellipticals up to large radii has been studied.
Resumo:
In this study, the correlation between the impregnation of proton exchange membrane fuel cell catalysts with perfluorosulfonate-ionomer (PFSI) and its electrochemical and electrocatalytic properties is investigated for different Pt loadings and carbon supports using a rotating-disk electrode (RDE) setup. We concentrate on its influence on the electrochemical surface area (ECSA) and the oxygen reduction reaction (ORR) activity. For this purpose, platinum (Pt) nanoparticles are prepared via a colloidal based preparation route and supported on three different carbon supports. Based on RDE experiments, we show that the ionomer has an influence both on the Pt utilization and the apparent kinetic current density of ORR. The experimental data reveal a strong interaction in the microstructure between the electrochemical properties and the surface properties of the carbon supports, metal loading and ionomer content. This study demonstrates that the colloidal synthesis approach offers interesting potential for systematic studies for the optimization of fuel cell catalysts.
Resumo:
As part of the ongoing CALIFA survey, we have conducted a thorough bidimensional analysis of the ionized gas in two E/S0 galaxies, NGC 6762 and NGC 5966, aiming to shed light on the nature of their warm ionized ISM. Specifically, we present optical (3745–7300 Å) integral field spectroscopy obtained with the PMAS/PPAK integral field spectrophotometer. Its wide field-of-view (1′ × 1′) covers the entire optical extent of each galaxy down to faint continuum surface brightnesses. To recover the nebular lines, we modeled and subtracted the underlying stellar continuum from the observed spectra using the STARLIGHT spectral synthesis code. The pure emission-line spectra were used to investigate the gas properties and determine the possible sources of ionization. We show the advantages of IFU data in interpreting the complex nature of the ionized gas in NGC 6762 and NGC 5966. In NGC 6762, the ionized gas and stellar emission display similar morphologies, while the emission line morphology is elongated in NGC 5966, spanning ~6 kpc, and is oriented roughly orthogonal to the major axis of the stellar continuum ellipsoid. Whereas gas and stars are kinematically aligned in NGC 6762, the gas is kinematically decoupled from the stars in NGC 5966. A decoupled rotating disk or an “ionization cone” are two possible interpretations of the elongated ionized gas structure in NGC 5966. The latter would be the first “ionization cone” of such a dimension detected within a weak emission-line galaxy. Both galaxies have weak emission-lines relative to the continuum[EW(Hα) ≲ 3 Å] and have very low excitation, log([OIII]λ5007/Hβ) ≲ 0.5. Based on optical diagnostic ratios ([OIII]λ5007/Hβ, [NII]λ6584/Hα, [SII]λ6717, 6731/Hα, [OI]λ6300/Hα), both objects contain a LINER nucleus and an extended LINER-like gas emission. The emission line ratios do not vary significantly with radius or aperture, which indicates that the nebular properties are spatially homogeneous. The gas emission in NGC 6762 can be best explained by photoionization by pAGB stars without the need of invoking any other excitation mechanism. In the case of NGC 5966, the presence of a nuclear ionizing source seems to be required to shape the elongated gas emission feature in the “ionization cone” scenario, although ionization by pAGB stars cannot be ruled out. Further study of this object is needed to clarify the nature of its elongated gas structure.
Resumo:
Most of electrocatalytic reactions occur in an aqueous environment. Understanding the influence of water structure on reaction dynamics is fundamental in electrocatalysis. In this work, the role of liquid water structure on the oxygen reduction at Pt(1 1 1) electrode is analyzed in methanesulfonic (MTSA) and perchloric acids. This is because these different anions can exert a different influence on liquid water structure. Results reveal a lower ORR electrode activity in MTSA than in HClO4 solutions and they are discussed in light of anion's influence on water structural ordering. From them, the existence of an outer-sphere, rate determining, step in the ORR mechanism is suggested.
Resumo:
The literature dealing with the electrochemical corrosion characteristics of unalloyed copper in aqueous chloride media is examined. The enormous quantity of polarisation and mixed/corrosion potential data that has been made available in the literature over the last 50 years has been compiled and discussed in a comprehensive review. For a wide range of electrode geometries, the importance of the chloride ion and the mass transport of anodic corrosion products on the corrosion behaviour of copper are made clear for both freshly polished and 'filmed' surfaces. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Selleri's arguments that a consideration of noninertial reference frames in the framework of special relativity identify absolute simultaneity as being Nature's choice of synchronization are considered. In the case of rectilinearly accelerating rockets, it is argued by considering two rockets which maintain a fixed proper separation rather than a fixed separation relative to the inertial frame in which they start from rest, that what seems the most natural choice for a simultaneity convention is problem-dependent and that Einstein's definition is the most natural (though still conventional) choice in this case. In addition, the supposed problems special relativity has with treating a rotating disk, namely how a pulse of light traveling around the circumference of the disk can have a local speed of light equal to c everywhere but a global speed not equal to c, and how coordinate transformations to the disk can give the Lorentz transformations in the limit of large disk radius but small angular velocity, are addressed. It is shown that the theory of Fermi frames solves both of these problems. It is also argued that the question of defining simultaneity relative to a uniformly rotating disk does riot need to be resolved in order to resolve Ehrenfest's paradox.
Resumo:
We present results from the Spitzer Infrared Spectrograph spectral mapping observations of 15 local luminous infrared galaxies (LIRGs). In this paper, we investigate the spatial variations of the mid-IR emission which includes fine structure lines, molecular hydrogen lines, polycyclic aromatic features (PAHs), continuum emission, and the 9.7 μm silicate feature. We also compare the nuclear and integrated spectra. We find that the star formation takes place in extended regions (several kpc) as probed by the PAH emission, as well as the [Ne II]12.81 μm and [Ne III]15.56 μm emissions. The behavior of the integrated PAH emission and 9.7 μm silicate feature is similar to that of local starburst galaxies. We also find that the minima of the [Ne III]15.56 μm/[Ne II]12.81 μm ratio tends to be located at the nuclei and its value is lower than that of H II regions in our LIRGs and nearby galaxies. It is likely that increased densities in the nuclei of LIRGs are responsible for the smaller nuclear [Ne III]15.56 μm/[Ne II]12.81 μm ratios. This includes the possibility that some of the most massive stars in the nuclei are still embedded in ultracompact H II regions. In a large fraction of our sample, the 11.3 μm PAH emission appears more extended than the dust 5.5 μm continuum emission. We find a dependency of the 11.3 μm PAH/7.7 μm PAH and [Ne II]12.81 μm/11.3 μm PAH ratios with the age of the stellar populations. Smaller and larger ratios, respectively, indicate recent star formation. The estimated warm (300 K
Resumo:
Mode of access: Internet.
Resumo:
Physical and electrochemical properties of nanostructured Ni-doped manganese oxides (MnO(x)) catalysts supported on different carbon powder substrates were investigated so as to characterize any carbon substrate effect toward the oxygen reduction reaction (ORR) kinetics in alkaline medium. These NiMnO(x)/C materials were characterized using physicochemical analyses. Small insertion of Ni atoms in the MnO(x) lattice was observed, which consists of a true doping of the manganese oxide phase. The corresponding NiMnO(x) phase is present in the form of needles or agglomerates, with crystallite sizes in the order of 1.5-6.7 nm (from x-ray diffraction analyses). Layered manganite (MnOOH) phase has been detected for the Monarch 1000-supported NiMnO(x) material, while different species of MnO(x) phases are present at the E350G and MM225 carbons. Electrochemical studies in thin porous coating active layers in the rotating ring-disk electrode setup revealed that the MnO(x) catalysts present better ORR kinetics and electrochemical stability upon Ni doping. The ORR follows the so-called peroxide mechanism on MnO(x)/C catalysts, with the occurrence of minority HO(2)(-) disproportionation reaction. The HO(2)(-) disproportionation reaction progressively increases with the Ni content in NiMnO(x) materials. The catalysts supported on the MM225 and E350G carbons promote faster disproportionation reaction, thus leading to an overall four-electron ORR pathway. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3528439] All rights reserved.
Resumo:
Scanning electrochemical microscopy (SECM) in feedback mode was employed to characterise the reactivity and microscopic peculiarities of bismuth and bismuth/lead alloys plated onto gold disk substrates in 0.1 molL(-1) NaOH solutions. Methyl viologen was used as redox mediator, while a platinum microelectrode was employed as the SECM tip. The metal films were electrodeposited ex situ from NaOH solutions containing either bismuth ions only or both bismuth and lead ions. Approach curves and SECM images indicated that the metal films were conductive and locally reactive with oxygen to provide Bi(3+) and Pb(2+) ions. The occurrence of the latter chemical reactions was verified by local anodic stripping voltammetry (ASV) at the substrate solution interface by using a mercury-coated platinum SECM tip. The latter types of measurements allowed also verifying that lead was not uniformly distributed onto the bismuth film electrode substrate. These findings were confirmed by scanning electron microscopy images. The surface heterogeneity produced during the metal deposition process, however, did not affect the analytical performance of the bismuth coated gold electrode in anodic stripping voltammetry for the determination of lead in alkaline media, even in aerated aqueous solutions. Under the latter conditions, stripping peak currents proportional to lead concentration with a satisfactory reproducibility (within 5% RSD) were obtained.
Resumo:
A comparative study using different mass proportions of WO3/C (1%, 5%, 10% and 15%) for H2O2 electrogeneration and subsequent phenol degradation was performed. To include the influence of the carbon substrate and the preparation methods, all synthesis parameters were evaluated. The WO3/C materials were prepared by a modified polymeric precursor method (PPM) and the sol-gel method (SGM) on Vulcan XC 72R and Printex L6 carbon supports, verifying the most efficient metal/carbon proportion. The materials were physically characterized by X-ray diffraction (XRD) and by X-ray photoelectron spectroscopy (XPS) techniques. The XRD and the XPS techniques identified just one phase containing WO3 and elevated oxygen concentration on carbon with the presence of WO3. The oxygen reduction reaction (ORR), studied by the rotating ring-disk electrode technique, showed that WO3/C material with the lowest tungsten content (1% WO3/C), supported on Vulcan XC 72R and prepared by SGM, was the most promising electrocatalyst for H2O2 electrogeneration. This material was then analyzed using a gas diffusion electrode (GDE) and 585mgL-1 of H2O2 was produced in acid media. This GDE was employed as a working electrode in an electrochemical cell to promote phenol degradation by an advanced oxidative process. The most efficient method applied was the photo-electro-Fenton; this method allowed for 65% degradation and 11% mineralization of phenol during a 2-h period. Following 12h of exhaustive electrolysis using the photo-electro-Fenton method, the total degradation of phenol was observed after 4h and the mineralization of phenol approached 75% after 12h. © 2013 Elsevier B.V.