552 resultados para Rostral ventrolateral medulla


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During exercise, intense brain activity orchestrates an increase in muscle tension. Additionally, there is an increase in cardiac output and ventilation to compensate the increased metabolic demand of muscle activity and to facilitate the removal of CO2 from and the delivery of O-2 to tissues. Here we tested the hypothesis that a subset of pontomedullary and hypothalamic neurons could be activated during dynamic acute exercise. Male Wistar rats (250-350 g) were divided into an exercise group (n = 12) that ran on a treadmill and a no-exercise group (n = 7). Immunohistochemistry of pontomedullary and hypothalamic sections to identify activation (c-Fos expression) of cardiorespiratory areas showed that the no-exercise rats exhibited minimal Fos expression. In contrast, there was intense activation of the nucleus of the solitary tract, the ventrolateral medulla (including the presumed central chemoreceptor neurons in the retrotrapezoid/parafacial region), the lateral parabrachial nucleus, the Kolliker-Fuse region, the perifornical region, which includes the perifornical area and the lateral hypothalamus, the dorsal medial hypothalamus, and the paraventricular nucleus of the hypothalamus after running exercise. Additionally, we observed Fos immunoreactivity in catecholaminergic neurons within the ventrolateral medulla (C1 region) without Fos expression in the A2, A5 and A7 neurons. In summary, we show for the first time that after acute exercise there is an intense activation of brain areas crucial for cardiorespiratory control. Possible involvement of the central command mechanism should be considered. Our results suggest whole brain-specific mobilization to correct and compensate the homeostatic changes produced by acute exercise. (c) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paraventricular nucleus of hypothalamus (PVN) is a well known site of integration for autonomic and cardiovascular responses, and the glutamate neurotransmitter plays an important role. The aim of our study was to evaluate the cardiovascular parameters and autonomic modulation by means of spectral analysis after ionotropic glutamate receptor inhibition in the PVN in conscious sedentary (S) or swimming trained (ST) rats. After exercise training protocol, adult male Wistar rats, instrumented with guide cannulae to PVN and artery and vein catheters were submitted to mean arterial pressure (MAP) and heart rate (HR) recording. At baseline, physical training induced a resting bradycardia (S: 379 +/- 3, ST: 349 +/- 2 bpm, P<0.05) and promoted adaptations in HRV characterized by an increase of HF in normalized values and a decrease of LF in absolute and normalized units compared with the sedentary group. Microinjection of kynurenic acid (KYNA) in the PVN of sedentary and trained rats promoted decreases in MAP and HR, but the decrease in HR was smaller in the trained animals (Delta HRS: -48 +/- 7, ST: -28 +/- 4 bpm, P<0.05). Furthermore, the differences in baseline parameters of pulse interval, found between sedentary and trained animals, disappeared after KYNA microinjection in the PVN. Our data suggest that the cardiovascular and autonomic adaptations to the heart induced by exercise training may involve glutamatergic mechanisms in the PVN. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated the involvement of paraventricular nucleus (PVN) in the changes in mean arterial pressure (MAP) and heart rate (HR) during an orthostatic challenge (head up tilt, HUT). Adult male Wistar rats, instrumented with guide cannulas to PVN and artery and vein catheters were submitted to MAP and HR recording in conscious state and induction of HUT. The HUT induced an increase in MAP and HR and the pretreatment with prazosin and atenolol blocked these effects. After inhibition of neurotransmission with cobalt chloride (1 mM/100 nl) into the PVN the HR parameters did not change, however we observed a decrease in MAP during HUT. Our data suggest the involvement of PVN in the brain circuitry involved in cardiovascular adjustment during orthostatic challenges. (C) 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibromyalgia (FM) is characterized by chronic non-inflammatory widespread pain (CWP) and changes in sympathetic function. In attempt to elucidate the pathophysiological mechanisms of FM we used a well-established CWP animal model. We aimed to evaluate changes in cardiac autonomic balance and baroreflex function in response to CWP induction in rats. CWP was induced by two injections of acidic saline (pH 4.0, n = 8) five days apart into the left gastrocnemius muscle. Control animals were injected twice with normal saline (pH 7.2, n = 6). One day after the second injection of acidic saline or normal saline, the animals had pulse interval (PI) and systolic arterial pressure (SAP) variability, and spontaneous baroreflex sensitivity (BRS) evaluated. After induction of CWP, there was an increase of power in the low frequency (LF) band of PI spectrum (12.75 +/- 1.04 nu), a decrease in the high frequency (HF) band (87.25 +/- 1.04 nu) and an increase of LF/HF ratio (0.16 +/- 0.01), when compared to control animals (7.83 +/- 1.13 nu LF; 92.16 +/- 1.13 nu HF; 0.08 +/- 0.01 LF/HF). In addition, there was an increase of power in the LF band of SAP spectrum (7.93 +/- 1.39 mmHg(2)) when compared to control animals (2.97 +/- 0.61 mmHg(2)). BRS was lower in acidic saline injected rats (0.59 +/- 0.06 ms/mmHg) when compared to control animals (0.71 +/- 0.03 ms/mmHg). Our results showed that induction of CWP in rats shifts cardiac sympathovagal balance towards sympathetic predominance and decreases BRS. These data corroborate findings in humans with FM. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Moraes DJ, Zoccal DB, Machado BH. Sympathoexcitation during chemoreflex active expiration is mediated by L-glutamate in the RVLM/Botzinger complex of rats. J Neurophysiol 108: 610-623, 2012. First published April 25, 2012; doi:10.1152/jn.00057.2012.-The involvement of glutamatergic neurotransmission in the rostral ventrolateral medulla/Botzinger/pre-Botzinger complexes (RVLM/BotC/pre-BotC) on the respiratory modulation of sympathoexcitatory response to peripheral chemoreflex activation (chemoreflex) was evaluated in the working heart-brain stem preparation of juvenile rats. We identified different types of baro- and chemosensitive presympathetic and respiratory neurons intermingled within the RVLM/BotC/pre-BotC. Bilateral microinjections of kynurenic acid (KYN) into the rostral aspect of RVLM (RVLM/BotC) produced an additional increase in frequency of the phrenic nerve (PN: 0.38 +/- 0.02 vs. 1 +/- 0.08 Hz; P < 0.05; n = 18) and hypoglossal (HN) inspiratory response (41 +/- 2 vs. 82 +/- 2%; P < 0.05; n = 8), but decreased postinspiratory (35 +/- 3 vs. 12 +/- 2%; P < 0.05) and late-expiratory (24 +/- 4 vs. 2 +/- 1%; P < 0.05; n = 5) abdominal (AbN) responses to chemoreflex. Likewise, expiratory vagal (cVN; 67 +/- 6 vs. 40 +/- 2%; P < 0.05; n = 5) and expiratory component of sympathoexcitatory (77 +/- 8 vs. 26 +/- 5%; P < 0.05; n = 18) responses to chemoreflex were reduced after KYN microinjections into RVLM/BotC. KYN microinjected into the caudal aspect of the RVLM (RVLM/pre-BotC; n = 16) abolished inspiratory responses [PN (n = 16) and HN (n = 6)], and no changes in magnitude of sympathoexcitatory (n = 16) and expiratory (AbN and cVN; n = 10) responses to chemoreflex, producing similar and phase-locked vagal, abdominal, and sympathetic responses. We conclude that in relation to chemoreflex activation 1) ionotropic glutamate receptors in RVLM/BotC and RVLM/pre-BtC are pivotal to expiratory and inspiratory responses, respectively; and 2) activation of ionotropic glutamate receptors in RVLM/BotC is essential to the coupling of active expiration and sympathoexcitatory response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stern JE, Sonner PM, Son SJ, Silva FC, Jackson K, Michelini LC. Exercise training normalizes an increased neuronal excitability of NTS-projecting neurons of the hypothalamic paraventricular nucleus in hypertensive rats. J Neurophysiol 107: 2912-2921, 2012. First published February 22, 2012; doi:10.1152/jn.00884.2011.-Elevated sympathetic outflow and altered autonomic reflexes, including impaired baroreflex function, are common findings observed in hypertensive disorders. Although a growing body of evidence supports a contribution of preautonomic neurons in the hypothalamic paraventricular nucleus (PVN) to altered autonomic control during hypertension, the precise underlying mechanisms remain unknown. Here, we aimed to determine whether the intrinsic excitability and repetitive firing properties of preautonomic PVN neurons that innervate the nucleus tractus solitarii (PVN-NTS neurons) were altered in spontaneously hypertensive rats (SHR). Moreover, given that exercise training is known to improve and/or correct autonomic deficits in hypertensive conditions, we evaluated whether exercise is an efficient behavioral approach to correct altered neuronal excitability in hypertensive rats. Patch-clamp recordings were obtained from retrogradely labeled PVN-NTS neurons in hypothalamic slices obtained from sedentary (S) and trained (T) Wistar-Kyoto (WKY) and SHR rats. Our results indicate an increased excitability of PVN-NTS neurons in SHR-S rats, reflected by an enhanced input-output function in response to depolarizing stimuli, a hyperpolarizing shift in Na+ spike threshold, and smaller hyperpolarizing afterpotentials. Importantly, we found exercise training in SHR rats to restore all these parameters back to those levels observed in WKY-S rats. In several cases, exercise evoked opposing effects in WKY-S rats compared with SHR-S rats, suggesting that exercise effects on PVN-NTS neurons are state dependent. Taken together, our results suggest that elevated preautonomic PVN-NTS neuronal excitability may contribute to altered autonomic control in SHR rats and that exercise training efficiently corrects these abnormalities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Panic disorder patients are vulnerable to recurrent panic attacks. Two neurochemical hypotheses have been proposed to explain this susceptibility. The first assumes that panic patients have deficient serotonergic inhibition of neurons localized in the dorsal periaqueductal gray matter of the midbrain that organize defensive reactions to cope with proximal threats and of sympathomotor control areas of the rostral ventrolateral medulla that generate most of the neurovegetative symptoms of the panic attack. The second suggests that endogenous opioids buffer normal subjects from the behavioral and physiological manifestations of the panic attack, and their deficit brings about heightened suffocation sensitivity and separation anxiety in panic patients, making them more vulnerable to panic attacks. Experimental results obtained in rats performing one-way escape in the elevated T-maze, an animal model of panic, indicate that the inhibitory action of serotonin on defense is connected with activation of endogenous opioids in the periaqueductal gray. This allows reconciliation of the serotonergic and opioidergic hypotheses of panic pathophysiology, the periaqueductal gray being the fulcrum of serotonin-opioid interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rostral ventrolateral medulla (RVLM) contains the presympathetic neurons involved in cardiovascular regulation that has been implicated as one of the most important central sites for the antihypertensive action of moxonidine (an α2-adrenergic and imidazoline agonist). Here, we sought to evaluate the cardiovascular effects produced by moxonidine injected into another important brainstem site, the commissural nucleus of the solitary tract (commNTS). Mean arterial pressure (MAP), heart rate (HR), splanchnic sympathetic nerve activity (sSNA) and activity of putative sympathoexcitatory vasomotor neurons of the RVLM were recorded in conscious or urethane-anesthetized, and artificial ventilated male Wistar rats. In conscious or anesthetized rats, moxonidine (2.5 and 5 nmol/50 nl) injected into the commNTS reduced MAP, HR and sSNA. The injection of moxonidine into the commNTS also elicited a reduction of 28% in the activity of sympathoexcitatory vasomotor neurons of the RVLM. To further assess the notion that moxonidine could act in another brainstem area to elicit the antihypertensive effects, a group with electrolytic lesions of the commNTS or sham and with stainless steel guide-cannulas implanted into the 4th V were used. In the sham group, moxonidine (20 nmol/1 μl) injected into 4th V decreased MAP and HR. The hypotension but not the bradycardia produced by moxonidine into the 4th V was reduced in acute (1 day) commNTS-lesioned rats. These data suggest that moxonidine can certainly act in other brainstem regions, such as commNTS to produce its beneficial therapeutic effects, such as hypotension and reduction in sympathetic nerve activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catecholaminergic C1 cells of the rostral ventrolateral medulla (RVLM) are key determinants of the sympathoexcitatory response to peripheral chemoreceptor activation. Overactivation of this reflex is thought to contribute to increased sympathetic activity and hypertension; however, molecular mechanisms linking peripheral chemoreceptor drive to hypertension remain poorly understood. We have recently determined that activation of P2Y1 receptors in the RVLM mimicked effects of peripheral chemoreceptor activation. Therefore, we hypothesize that P2Y1 receptors regulate peripheral chemoreceptor drive in this region. Here, we determine whether P2Y1 receptors are expressed by C1 neurons in the RVLM and contribute to peripheral chemoreceptor control of breathing, sympathetic activity, and blood pressure. We found that injection of a specific P2Y1 receptor agonist (MRS2365) into the RVLM of anesthetized adult rats increased phrenic nerve activity (≈55%), sympathetic nerve activity (38±6%), and blood pressure (23±1 mm Hg), whereas application of a specific P2Y1 receptor antagonist (MRS2179) decreased peripheral chemoreceptor–mediated activation of phrenic nerve activity, sympathetic nerve activity, and blood pressure. To establish that P2Y1 receptors are expressed by C1 cells, we determine in the brain slice preparation using cell-attached recording techniques that cells responsive to MRS2365 are immunoreactive for tyrosine hydroxylase (a marker of C1 cells), and we determine in vivo that C1-lesioned animals do not respond to RVLM injection of MRS2365. These data identify P2Y1 receptors as key determinants of peripheral chemoreceptor regulation of breathing, sympathetic nerve activity, and blood pressure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

By most accounts the psychological stressor restraint produces a distinct pattern of neuronal activation in the brain. However, some evidence is incongruous with this pattern, leading us to propose that the restraint- induced pattern in the central nervous system might depend on the duration of restraint used. We therefore determined the pattern of neuronal activation ( as indicated by the presence of Fos protein) seen in the paraventricular nucleus (PVN), bed nucleus of the stria terminalis, amygdala, locus coeruleus, nucleus tractus solitarius (NTS), ventrolateral medulla (VLM) and thoracic spinal cord of the rat in response to 0, 15, 30 or 60 min periods of restraint. We found that although a number of cell groups displayed a linear increase in activity with increasing durations of restraint ( e. g. hypothalamic corticotrophin-releasing factor (CRF) cells, medial amygdala neurons and sympathetic preganglionic neurons of the thoracic spinal cord), a number of cell groups did not. For example, in the central amygdala restraint produced both a decrease in CRF cell activity and an increase in non-CRF cell activity. In the locus coeruleus, noradrenergic neurons did not display Fos in response to 15 min of restraint, but were significantly activated by 30 or 60 min restraint. After 30 or 60 min restraint a greater degree of activation of more rostral A1 noradrenergic neurons was observed compared with the pattern of A1 noradrenergic neurons in response to 15 min restraint. The results of this study demonstrate that restraint stress duration determines the amount and the pattern of neuronal activation seen in response to this psychological stressor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neonatal anoxia is a worldwide clinical problem that has serious and lasting consequences. The diversity of models does not allow complete reproducibility, so a standardized model is needed. In this study, we developed a rat model of neonatal anoxia that utilizes a semi-hermetic system suitable for oxygen deprivation. The validity of this model was confirmed using pulse oximetry, arterial gasometry, observation of skin color and behavior and analysis of Fos immunoreactivity in brain regions that function in respiratory control. For these experiments, 87 male albino neonate rats (Rattus norvegicus, lineage Wistar) aged approximate 30 postnatal hours were divided into anoxia and control groups. The pups were kept in an euthanasia polycarbonate chamber at 36 +/- 1 degrees C, with continuous 100% nitrogen gas flow at 3 L/min and 101.7 kPa for 25 min. The peripheral arterial oxygen saturation of the anoxia group decreased 75% from its initial value. Decreased pH and partial pressure of oxygen and increased partial pressure of carbon dioxide were observed in this group, indicating metabolic acidosis, hypoxia and hypercapnia. respectively. Analysis of neuronal activation showed Fos immunoreactivity in the solitary tract nucleus, the lateral reticular nucleus and the area postrema, confirming that those conditions activated areas related to respiratory control in the nervous system. Therefore, the proposed model of neonatal anoxia allows standardization and precise control of the anoxic condition, which should be of great value in indentifying both the mechanisms underlying neonatal anoxia and novel therapeutic strategies to combat or prevent this widespread public health problem. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using Fos immunolabelling as a marker of neuronal activation, we investigated the role of the parabrachial nucleus in generating central neuronal responses to the systemic administration of the proinflammatory cytokine interleukin-1β (1 μg/kg, i.a.). Relative to intact animals, parabrachial nucleus lesions significantly reduced the number of Fos-positive cells observed in the central amygdala (CeA), the bed nucleus of the stria terminalis (BNST), and the ventrolateral medulla (VLM) after systemic interleukin-1β. In a subsequent experiment in which animals received parabrachial-directed deposits of a retrograde tracer, it was found that many neurons located in the nucleus tractus solitarius (NTS) and the VLM neurons were both retrogradely labelled and Fos-positive after interleukin-1β administration. These results suggest that the parabrachial nucleus plays a critical role in interleukin-1β-induced Fos expression in CeA, BNST and VLM neurons and that neurons of the NTS and VLM may serve to trigger or at least influence changes in parabrachial nucleus activity that follows systemic interleukin-1β administration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hypothalamic nuclei, particularly the paraventricular nuclei (PVN), are important brain sites responsible for central nervous system responses during an immune challenge. The brainstem catecholamine cells of the nucleus tractus solitarius (NTS) and ventrolateral medulla (VLM) have been shown to play critical roles in relaying systemic immune signals to the PVN. However, whilst it is well recognised that PVN divisions also innervate the NTS and VLM, it is not known whether descending PVN pathways can modulate the recruitment of brainstem cells during an immune challenge. Using systemic administration of the proinflammatory cytokine interleukin-1β, in combination with Fos immunolabelling, we firstly investigated the effect of PVN lesions on NTS and VLM catecholamine and non-catecholamine cell responses. We found that ibotenic acid lesions of the PVN significantly reduced numbers of Fos-positive non-catecholamine, noradrenergic and adrenergic cells observable in the VLM and NTS after interleukin-1β administration. We then investigated the origins of descending inputs to the VLM and NTS, activated by systemic interleukin-1β, by mapping the distribution of Fos-positive retrogradely-labelled cells in divisions of the PVN after iontophoretically depositing choleratoxin-b subunit into the NTS or VLM one week prior to interleukin-1β administration. We found that, after either NTS or VLM deposits, the majority of retrogradely-labelled Fos-positive cells activated by interleukin-1β were localised in the medial and lateral parvocellular PVN divisions. Retrogradely-labelled Fos-positive cells were also observed in the NTS after VLM deposits, and in the VLM after NTS tracer deposits, suggesting reciprocal communication between these two nuclei after systemic interleukin-1β. Thus the present study shows that the PVN has the capacity to modulate NTS and VLM responses after an immune challenge and that these may result from descending projections arising in the medial and lateral PVN divisions. These findings suggest that central nervous system responses to an immune challenge are likely to involve complex reciprocal connections between the PVN and the brainstem as well as between brainstem nuclei themselves.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Medial parvocellular paraventricular corticotropin-releasing hormone (mPVN CRH) cells are critical in generating hypothalamic-pituitary-adrenal (HPA) axis responses to systemic interleukin-1beta (IL-1beta). However, although it is understood that catecholamine inputs are important in initiating mPVN CRH cell responses to IL-1beta, the contributions of distinct brainstem catecholamine cell groups are not known. We examined the role of nucleus tractus solitarius (NTS) and ventrolateral medulla (VLM) catecholamine cells in the activation of mPVN CRH, hypothalamic oxytocin (OT) and central amygdala cells in response to IL-1beta (1 microg/kg, i.a.). Immunolabelling for the expression of c-fos was used as a marker of neuronal activation in combination with appropriate cytoplasmic phenotypic markers. First we confirmed that PVN 6-hydroxydopamine lesions, which selectively depleted catecholaminergic terminals, significantly reduced IL-1beta-induced mPVN CRH cell activation. The contribution of VLM (A1/C1 cells) versus NTS (A2 cells) catecholamine cells to mPVN CRH cell responses was then examined by placing ibotenic acid lesions in either the VLM or NTS. The precise positioning of these lesions was guided by prior retrograde tracing studies in which we mapped the location of IL-1beta-activated VLM and NTS cells that project to the mPVN. Both VLM and NTS lesions reduced the mPVN CRH and OT cell responses to IL-1beta. Unlike VLM lesions, NTS lesions also suppressed the recruitment of central amygdala neurons. These studies provide novel evidence that both the NTS and VLM catecholamine cells have important, but differential, contributions to the generation of IL-1beta-induced HPA axis responses.