898 resultados para Rock fabric


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of foliated rock masses is common in mining environment. Methods employing continuum approximation in describing the deformation of such rock masses possess a clear advantage over methods where each rock layer and each inter-layer interface (joint) is explicitly modelled. In devising such a continuum model it is imperative that moment (couple) stresses and internal rotations associated with the bending of the rock layers be properly incorporated in the model formulation. Such an approach will lead to a Cosserat-type theory. In the present model, the behaviour of the intact rock layer is assumed to be linearly elastic and the joints are assumed to be elastic-perfectly plastic. Condition of slip at the interfaces are determined by a Mohr-Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformations. The model is incorporated into the finite element program AFENA and validated against an analytical solution of elementary buckling problems of a layered medium under gravity loading. A design chart suitable for assessing the stability of slopes in foliated rock masses against flexural buckling failure has been developed. The design chart is easy to use and provides a quick estimate of critical loading factors for slopes in foliated rock masses. It is shown that the model based on Euler's buckling theory as proposed by Cavers (Rock Mechanics and Rock Engineering 1981; 14:87-104) substantially overestimates the critical heights for a vertical slope and underestimates the same for sub-vertical slopes. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the finite element method to simulate the rock alteration and metamorphic process in hydrothermal systems. In particular, we consider the fluid-rock interaction problems in pore-fluid saturated porous rocks. Since the fluid rock interaction takes place at the contact interface between the pore-fluid and solid minerals, it is governed by the chemical reaction which usually takes place very slowly at this contact interface, from the geochemical point of view. Due to the relative slowness of the rate of the chemical reaction to the velocity of the pore-fluid flow in the hydrothermal system to be considered, there exists a retardation zone, in which the conventional static theory in geochemistry does not hold true. Since this issue is often overlooked by some purely numerical modellers, it is emphasized in this paper. The related results from a typical rock alteration and metamorphic problem in a hydrothermal system have shown not only the detailed rock alteration and metamorphic process, but also the size of the retardation zone in the hydrothermal system. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents new Structural data from a high-pressure/low-temperature (HP/LT) metamorphic terrane exposed on the islands of Syros and Sifnos (Cyclades, Greece). The structure and the metamorphism of a relatively coherent HP/LT rock section were studied in order to elucidate how strain was accommodated at deep crustal levels during the formation and exhumation of HP/LT rocks. At least three deformation phases associated with eclogite- and blueschist-facies conditions (P = 8-15 kbar; T = 400-550 degreesC) were recognised. The earliest deformation fabric (S1), preserved as inclusion trails within garnet porphyroblasts, is aligned to define a sub-vertical schistosity (at present orientation), which is frequently orthogonal to the flat matrix schistosity (S2), and may indicate that deep crustal thickening involved upright folding. The currently dominant fabric in the HP rock section, S2, is Usually moderately dipping and locally contains NW-trending glaucophane lineations, symmetric pressure-shadows and eclogitic boudins. The symmetric structures associated with this fabric seem to indicate coaxial vertical thinning, although the existence of non-coaxial structures out of the study area cannot be excluded. Glaucophane-bearing shear bands (S3), with top-to-NW sense of shearing, locally crosscut the earlier structures. The latest recognised fabric (D4) is scarce and often absent within the HP rocks. It is associated with top-to-NE kinematic criteria that formed at greenschist-facies conditions (P = 4-7 kbar; T = 400-450 degreesC). Based on these observations, it is suggested that partitioning of strain occurred at different crustal levels and at different times. Deep crustal deformation was governed by thickening via upright folding followed by coaxial vertical thinning, whereas non-coaxial shearing occurred when the rocks were already exhumed to relatively shallow crustal levels. The earliest fabrics (D1 to D3) pertain to Alpine orogenesis and possibly to syn-orogenic extension, whereas the latest correspond to whole-crust back-are extension. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model for finely layered visco-elastic rock proposed by us in previous papers is revisited and generalized to include couple stresses. We begin with an outline of the governing equations for the standard continuum case and apply a computational simulation scheme suitable for problems involving very large deformations. We then consider buckling instabilities in a finite, rectangular domain. Embedded within this domain, parallel to the longer dimension we consider a stiff, layered beam under compression. We analyse folding up to 40% shortening. The standard continuum solution becomes unstable for extreme values of the shear/normal viscosity ratio. The instability is a consequence of the neglect of the bending stiffness/viscosity in the standard continuum model. We suggest considering these effects within the framework of a couple stress theory. Couple stress theories involve second order spatial derivatives of the velocities/displacements in the virtual work principle. To avoid C-1 continuity in the finite element formulation we introduce the spin of the cross sections of the individual layers as an independent variable and enforce equality to the spin of the unit normal vector to the layers (-the director of the layer system-) by means of a penalty method. We illustrate the convergence of the penalty method by means of numerical solutions of simple shears of an infinite layer for increasing values of the penalty parameter. For the shear problem we present solutions assuming that the internal layering is oriented orthogonal to the surfaces of the shear layer initially. For high values of the ratio of the normal-to the shear viscosity the deformation concentrates in thin bands around to the layer surfaces. The effect of couple stresses on the evolution of folds in layered structures is also investigated. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze folding phenomena in finely layered viscoelastic rock. Fine is meant in the sense that the thickness of each layer is considerably smaller than characteristic structural dimensions. For this purpose we derive constitutive relations and apply a computational simulation scheme (a finite-element based particle advection scheme; see MORESI et al., 2001) suitable for problems involving very large deformations of layered viscous and viscoelastic rocks. An algorithm for the time integration of the governing equations as well as details of the finite-element implementation is also given. We then consider buckling instabilities in a finite, rectangular domain. Embedded within this domain, parallel to the longer dimension we consider a stiff, layered plate. The domain is compressed along the layer axis by prescribing velocities along the sides. First, for the viscous limit we consider the response to a series of harmonic perturbations of the director orientation. The Fourier spectra of the initial folding velocity are compared for different viscosity ratios. Turning to the nonlinear regime we analyze viscoelastic folding histories up to 40% shortening. The effect of layering manifests itself in that appreciable buckling instabilities are obtained at much lower viscosity ratios (1:10) as is required for the buckling of isotropic plates (1:500). The wavelength induced by the initial harmonic perturbation of the director orientation seems to be persistent. In the section of the parameter space considered here elasticity seems to delay or inhibit the occurrence of a second, larger wavelength. Finally, in a linear instability analysis we undertake a brief excursion into the potential role of couple stresses on the folding process. The linear instability analysis also provides insight into the expected modes of deformation at the onset of instability, and the different regimes of behavior one might expect to observe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to understand rock bolt Stress Corrosion Cracking (SCC), a series of experiments have been performed in Linearly Increasing Stress Test (LIST) apparatus. One series of experiments determined the threshold stress of various bolt metallurgies (900 MPa for Steel A, and 800 MPa for Steel B and C). The high values of threshold stress suggest that SCC begins in rock bolts when they are sheared by moving rock strata. Typical crack velocity values have been measured to be 2.5 x 10(-8) m s(-1), indicating that there is not much benefit for rock bolt steel of higher fracture toughness. Another series of experiments were performed to understand the environmental conditions causing SCC of steel A and galvanised Steel A rock bolt steel. SCC only occurred for environmental conditions for which produce hydrogen on the sample surface, leading to hydrogen embrittlement and SCC. Fracture surfaces of LIST samples failed by SCC were found to display the same fracture regions as fracture surfaces of rock bolts failed in service by SCC: Tearing Topography Surface (TTS), Corrugated Irregular Surface (CIS), quasi Micro Void Coalescence (qMVC) and Fast Fracture Surface (FFS). Water chemistry analysis were carried out on samples collected from various Australian mines in order to compare laboratory electrolyte conditions to those found in underground mines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rock bolt stress corrosion cracking (SCC) has been investigated using the linearly increasing stress test (LIST). One series of experiments determined the threshold stress of various bolt metallurgies (900 MPa for 1355AXRC, and 800 MPa for MAC and MA840B steels). The high values of threshold stress suggest that SCC begins in rock bolts when they are sheared by moving rock strata. SCC only occurred for environmental conditions which produce hydrogen on the sample surface, leading to hydrogen embrittlement and SCC. Different threshold potentials were determined for a range of metallurgies. Cold work was shown to increase the resistance of the steel to SCC. Rock bolt rib geometry does not have a direct impact on the SCC resistance properties of the bolt, although the process by which the ribs are produced can introduce tensile stresses into the bolt which lower its resistance to SCC. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on a comprehensive study in research centers and libraries, a panorama of the critical response to Argentine rock in academic circles has been traced in various fields of knowledge. Research works including books, trade magazines, and academic papers on this musical movement spanning four decades have been consulted. The results show that the criticism has generated a ""developing tradition"" around the movement, mainly in the Social and Communication Sciences, and it has presented the following predominant traits: approaching rock essentially as a determinant of ""social identities""; periodization in the genre according to political regime: and analysis of the lyrics based solely on content. These traits contribute to a delimitation of rock as an exclusive phenomenon of the mass media, which relegates to secondary importance its aesthetic function and its relationship with other artistic series. Furthermore, we have observed a scarcity of approaches to rock lyrics as a linguistic-discursive surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical methods are used to simulate the double-diffusion driven convective pore-fluid flow and rock alteration in three-dimensional fluid-saturated geological fault zones. The double diffusion is caused by a combination of both the positive upward temperature gradient and the positive downward salinity concentration gradient within a three-dimensional fluid-saturated geological fault zone, which is assumed to be more permeable than its surrounding rocks. In order to ensure the physical meaningfulness of the obtained numerical solutions, the numerical method used in this study is validated by a benchmark problem, for which the analytical solution to the critical Rayleigh number of the system is available. The theoretical value of the critical Rayleigh number of a three-dimensional fluid-saturated geological fault zone system can be used to judge whether or not the double-diffusion driven convective pore-fluid flow can take place within the system. After the possibility of triggering the double-diffusion driven convective pore-fluid flow is theoretically validated for the numerical model of a three-dimensional fluid-saturated geological fault zone system, the corresponding numerical solutions for the convective flow and temperature are directly coupled with a geochemical system. Through the numerical simulation of the coupled system between the convective fluid flow, heat transfer, mass transport and chemical reactions, we have investigated the effect of the double-diffusion driven convective pore-fluid flow on the rock alteration, which is the direct consequence of mineral redistribution due to its dissolution, transportation and precipitation, within the three-dimensional fluid-saturated geological fault zone system. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pop-rock musicians are at risk of developing hearing loss and other symptoms related to amplified music. Aim: The aim of the present study was to assess the satisfaction provided by the use of hearing protection in pop-rock musicians. Study design: Contemporary cohort study. Materials and Methods: A study of 23 male pop-rock musicians, aged between 25 to 45 years. After audiological evaluation (pure tone audiometry, middle ear analysis, TEOAE and DPOAE) hearing protective devices were provided to be used for three months. After that musicians answered a satisfaction assessment questionnaire. Results: The prevalence of hearing loss was of 21.7%. The most common complaints about the hearing protectors were: autophonia, pressure in the ears, interference in high frequencies perception and full time use of the hearing protector during concerts. There was a positive correlation between a reduction in tinnitus after the use of the HPD with the following complaints: tinnitus after beginning the career (p=0.044), discomfort with the sound intensity in the work place (p=0.009) and intolerance to loud sound (p=0.029). Conclusions: There was a high prevalence of hearing loss and a positive tendency towards the use of the ear protector device among the sample population.