905 resultados para Robot sensing systems
Resumo:
Chromosomal replication in Escherichia coli was studied by flow cytometry and was found to be inhibited by an extracellular factor present in conditioned media collected during late exponential and early stationary phase, i.e., via a quorum-sensing mechanism. Our results suggest that the inhibitory activity of the extracellular factor is exerted during initiation of DNA replication rather than during elongation. Furthermore, we present evidence that this interaction may occur directly at each of the replication forks. Unlike other quorum-sensing systems described so far for Gram-negative bacteria, this inhibitory activity does not require transcription or translation to be effective. Implications of quorum-sensing regulation of DNA replication are discussed.
Resumo:
The technique of remote sensing provides a unique view of the earth's surface and considerable areas can be surveyed in a short amount of time. The aim of this project was to evaluate whether remote sensing, particularly using the Airborne Thematic Mapper (ATM) with its wide spectral range, was capable of monitoring landfill sites within an urban environment with the aid of image processing and Geographical Information Systems (GIS) methods. The regions under study were in the West Midlands conurbation and consisted of a large area in what is locally known as the Black Country containing heavy industry intermingled with residential areas, and a large single active landfill in north Birmingham. When waste is collected in large volumes it decays and gives off pollutants. These pollutants, landfill gas and leachate (a liquid effluent), are known to be injurious to vegetation and can cause stress and death. Vegetation under stress can exhibit a physiological change, detectable by the remote sensing systems used. The chemical and biological reactions that create the pollutants are exothermic and the gas and leachate, if they leave the waste, can be warmer than their surroundings. Thermal imagery from the ATM (daylight and dawn) and thermal video were obtained and used to find thermal anomalies on the area under study. The results showed that vegetation stress is not a reliable indicator of landfill gas migration, as sites within an urban environment have a cover too complex for the effects to be identified. Gas emissions from two sites were successfully detected by all the thermal imagery with the thermal ATM being the best. Although the results were somewhat disappointing, recent technical advancements in the remote sensing systems used in this project would allow geo-registration of ATM imagery taken on different occasions and the elimination of the effects of solar insolation.
Resumo:
Fibre Bragg grating sensors are usually expensive to interrogate, and part of this thesis describes a low cost interrogation system for a group of such devices which can be indefinitely scaled up for larger numbers of sensors without requiring an increasingly broadband light source. It incorporates inherent temperature correction and also uses fewer photodiodes than the number or sensors it interrogates, using neural networks to interpret the photodiode data. A novel sensing arrangement using an FBG grating encapsulated in a silicone polymer is presented. This sensor is capable of distinguishing between different surface profiles with ridges 0.5 to 1mm deep and 2mm pitch and either triangular, semicircular or square in profile. Early experiments using neural networks to distinguish between these profiles are also presented. The potential applications for tactile sensing systems incorporating fibre Bragg gratings and neural networks are explored.
Resumo:
Two distributive tactile sensing systems are presented, based on fibre Bragg grating sensors. The first is a onedimensional metal strip with an array of 4 sensors, which is capable of detecting the magnitude and position of a contacting load. This system is compared experimentally with a similar system using resistive strain gauges. The second is a two-dimensional steel plate with 9 sensors which is able to distinguish the position and shape of a contacting load. This system is compared with a similar system using 16 infrared displacement sensors. Each system uses neural networks to process the sensor data to give information concerning the type of contact.
Resumo:
Artificial tactile sensing systems using the distributive tactile sensing technique and fibre Bragg grating sensors are presented. A one-dimensional arrangement, with possible applications in an endoscope, is compared with a similar arrangement using conventional electronic sensors. A two-dimensional sensing surface is described, with potential applications in human balance and gait analysis, capable of detecting simultaneously the position and shape of an object placed upon it. It is believed that this work represents the first use of fibre Bragg grating sensors in a distributive sensing regime.
Resumo:
Two distributive tactile sensing systems are presented, based on fibre Bragg grating sensors. The first is a one-dimensional metal strip with an array of 4 sensors, which is capable of detecting the magnitude and position of a contacting load. This system is compared experimentally with a similar system using resistive strain gauges. The second is a two-dimensional steel plate with 9 sensors which is able to distinguish the position and shape of a contacting load. This system is compared with a similar system using 16 infrared displacement sensors. Each system uses neural networks to process the sensor data to give information concerning the type of contact.
Resumo:
The high gains in performance predicted for optical immersion are difficult to achieve in practice due to total internal reflection at the lens/detector interface. By reducing the air gap at this interface optical tunneling becomes possible and the predicted gains can be realized in practical devices. Using this technique we have demonstrated large performance gains by optically immersing mid-infrared heterostructure InA1Sb LEDs and photodiodes using hypershperical germanium lenses. The development of an effective method of optical immersion that gives excellent optical coupling has produced a photodiode with a peak room temperature detectivity (D*) of 5.3 x 109 cmHz½W-1 at λpeak=5.4μm and a 40° field of view. A hyperspherically immersed LED showed a f-fold improvement in the external efficiency, and a 3-fold improvement in the directionality compared with a conventional planar LED for f/2 optical systems. The incorporation of these uncooled devices in a White cell produced a NO2 gas sensing system with 2 part-per-million sensitivity, with an LED drive current of <5mA. These results represent a significant advance in the use of solid state devices for portable gas sensing systems.
Resumo:
Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.
Resumo:
Ageing and deterioration of infrastructure is a challenge facing transport authorities. In
particular, there is a need for increased bridge monitoring in order to provide adequate
maintenance and to guarantee acceptable levels of transport safety. The Intelligent
Infrastructure group at Queens University Belfast (QUB) are working on a number of aspects
of infrastructure monitoring and this paper presents summarised results from three distinct
monitoring projects carried out by this group. Firstly the findings from a project on next
generation Bridge Weight in Motion (B-WIM) are reported, this includes full scale field testing
using fibre optic strain sensors. Secondly, results from early phase testing of a computer
vision system for bridge deflection monitoring are reported on. This research seeks to exploit
recent advances in image processing technology with a view to developing contactless
bridge monitoring approaches. Considering the logistical difficulty of installing sensors on a
‘live’ bridge, contactless monitoring has some inherent advantages over conventional
contact based sensing systems. Finally the last section of the paper presents some recent
findings on drive by bridge monitoring. In practice a drive-by monitoring system will likely
require GPS to allow the response of a given bridge to be identified; this study looks at the
feasibility of using low-cost GPS sensors for this purpose, via field trials. The three topics
outlined above cover a spectrum of SHM approaches namely, wired monitoring, contactless
monitoring and drive by monitoring
Resumo:
Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
A primary goal of context-aware systems is delivering the right information at the right place and right time to users in order to enable them to make effective decisions and improve their quality of life. There are three key requirements for achieving this goal: determining what information is relevant, personalizing it based on the users’ context (location, preferences, behavioral history etc.), and delivering it to them in a timely manner without an explicit request from them. These requirements create a paradigm that we term as “Proactive Context-aware Computing”. Most of the existing context-aware systems fulfill only a subset of these requirements. Many of these systems focus only on personalization of the requested information based on users’ current context. Moreover, they are often designed for specific domains. In addition, most of the existing systems are reactive - the users request for some information and the system delivers it to them. These systems are not proactive i.e. they cannot anticipate users’ intent and behavior and act proactively without an explicit request from them. In order to overcome these limitations, we need to conduct a deeper analysis and enhance our understanding of context-aware systems that are generic, universal, proactive and applicable to a wide variety of domains. To support this dissertation, we explore several directions. Clearly the most significant sources of information about users today are smartphones. A large amount of users’ context can be acquired through them and they can be used as an effective means to deliver information to users. In addition, social media such as Facebook, Flickr and Foursquare provide a rich and powerful platform to mine users’ interests, preferences and behavioral history. We employ the ubiquity of smartphones and the wealth of information available from social media to address the challenge of building proactive context-aware systems. We have implemented and evaluated a few approaches, including some as part of the Rover framework, to achieve the paradigm of Proactive Context-aware Computing. Rover is a context-aware research platform which has been evolving for the last 6 years. Since location is one of the most important context for users, we have developed ‘Locus’, an indoor localization, tracking and navigation system for multi-story buildings. Other important dimensions of users’ context include the activities that they are engaged in. To this end, we have developed ‘SenseMe’, a system that leverages the smartphone and its multiple sensors in order to perform multidimensional context and activity recognition for users. As part of the ‘SenseMe’ project, we also conducted an exploratory study of privacy, trust, risks and other concerns of users with smart phone based personal sensing systems and applications. To determine what information would be relevant to users’ situations, we have developed ‘TellMe’ - a system that employs a new, flexible and scalable approach based on Natural Language Processing techniques to perform bootstrapped discovery and ranking of relevant information in context-aware systems. In order to personalize the relevant information, we have also developed an algorithm and system for mining a broad range of users’ preferences from their social network profiles and activities. For recommending new information to the users based on their past behavior and context history (such as visited locations, activities and time), we have developed a recommender system and approach for performing multi-dimensional collaborative recommendations using tensor factorization. For timely delivery of personalized and relevant information, it is essential to anticipate and predict users’ behavior. To this end, we have developed a unified infrastructure, within the Rover framework, and implemented several novel approaches and algorithms that employ various contextual features and state of the art machine learning techniques for building diverse behavioral models of users. Examples of generated models include classifying users’ semantic places and mobility states, predicting their availability for accepting calls on smartphones and inferring their device charging behavior. Finally, to enable proactivity in context-aware systems, we have also developed a planning framework based on HTN planning. Together, these works provide a major push in the direction of proactive context-aware computing.
Resumo:
Part 11: Reference and Conceptual Models
Resumo:
Odometry is an important input to robot navigation systems, and we are interested in the performance of vision-only techniques. In this paper we experimentally evaluate and compare the performance of wheel odometry, monocular feature-based visual odometry, monocular patch-based visual odometry, and a technique that fuses wheel odometry and visual odometry, on a mobile robot operating in a typical indoor environment.