888 resultados para Rna Replication
Resumo:
The dengue virus (DENV) non-structural 1 (NS1) protein plays a critical role in viral RNA replication and has a central position in DENV pathogenesis. DENV NS1 is a glycoprotein expressed in infected mammalian cells as soluble monomers that dimerize in the lumen of the endoplasmic reticulum; NS1 is subsequently transported to the cell surface, where it remains membrane associated or is secreted into the extracellular milieu as a hexameric complex. During the last three decades, the DENV NS1 protein has also been intensively investigated as a potential target for vaccines and antiviral drugs. In addition, NS1 is the major diagnostic marker for dengue infection. This review highlights some important issues regarding the role of NS1 in DENV pathogenesis and its biotechnological applications, both as a target for the development of safe and effective vaccines and antiviral drugs and as a tool for the generation of accurate diagnostic methods
Resumo:
Das Hepatitis C Virus (HCV) ist ein umhülltes RNA Virus aus der Familie der Flaviviridae. Sein Genom kodiert für ein ca. 3000 Aminosäuren langes Polyprotein, welches co- und posttranslational in seine funktionellen Einheiten gespalten wird. Eines dieser viralen Proteine ist NS5A. Es handelt sich hierbei um ein stark phosphoryliertes Protein, das eine amphipatische α-Helix im Amino-Terminus trägt, welche für die Membran-Assoziation von NS5A verantwortlich ist. Welche Rolle die Phosphorylierung für die Funktion des Proteins spielt, bzw. welche Funktion NS5A überhaupt ausübt, ist zur Zeit noch unklar. Beobachtungen lassen Vermutungen über eine Funktion von NS5A bei der Resistenz infizierter Zellen gegenüber Interferon-alpha zu. Weiterhin wird vermutet, das NS5A als Komponente des membranständigen HCV Replikasekomplexes an der RNA Replikation beteiligt ist. Das Ziel dieser Doktorarbeit war es, die Funktion von NS5A für die RNA Replikation zu untersuchen. Zu diesem Zweck wurde eine Serie von Phosphorylierungsstellen-Mutanten generiert, die auf Ihre Replikationsfähigkeit und den Phosphorylierungsstatus hin untersucht wurden. Wir fanden, dass bestimmte Serin-Substitutionen im Zentrum von NS5A zu einer gesteigerten RNA Replikation führten, bei gleichzeitig reduzierter NS5A Hyperphosphorylierung. Weiterhin studierten wir den Einfluß von Mutationen in der Amino-terminalen amphipatischen α-Helix von NS5A auf die RNA-Replikation, sowie Phosphorylierung und subzelluläre Lokalisation des Proteins. Wir fanden, dass geringfügige strukturelle Veränderungen der amphipatischen Helix zu einer veränderten subzellulären Lokalisation von NS5A führten, was mit einer reduzierten oder komplett inhibierten RNA Replikation einherging. Zudem interferierten die strukturellen Veränderungen mit der Hyperphosphorylierung des Proteins, was den Schluß nahe legt, dass die amphipatische Helix eine wichtige strukturelle Komponente des Proteins darstellt, die für die korrekte Faltung und Phosphorylierung des Proteins essentiell ist. Als weitere Aspekte wurden die Trans-Komplementationsfähigkeit der verschiedenen viralen Komponenten des HCV Replikasekomplexes untersucht, sowie zelluläre Interaktionspartner von NS5A identifiziert. Zusammenfassend zeigen die Ergebnisse dieser Doktorarbeit, dass NS5A eine wichtige Rolle bei der RNA-Replikation spielt. Diese Funktion wird wahrscheinlich über den Phosphorylierungszustand des Proteins reguliert.
Resumo:
Background Changes in CD4 cell counts are poorly documented in individuals with low or moderate-level viremia while on antiretroviral treatment (ART) in resource-limited settings. We assessed the impact of on-going HIV-RNA replication on CD4 cell count slopes in patients treated with a first-line combination ART. Method Naïve patients on a first-line ART regimen with at least two measures of HIV-RNA available after ART initiation were included in the study. The relationships between mean CD4 cell count change and HIV-RNA at 6 and 12 months after ART initiation (M6 and M12) were assessed by linear mixed models adjusted for gender, age, clinical stage and year of starting ART. Results 3,338 patients were included (14 cohorts, 64% female) and the group had the following characteristics: a median follow-up time of 1.6 years, a median age of 34 years, and a median CD4 cell count at ART initiation of 107 cells/μL. All patients with suppressed HIV-RNA at M12 had a continuous increase in CD4 cell count up to 18 months after treatment initiation. By contrast, any degree of HIV-RNA replication both at M6 and M12 was associated with a flat or a decreasing CD4 cell count slope. Multivariable analysis using HIV-RNA thresholds of 10,000 and 5,000 copies confirmed the significant effect of HIV-RNA on CD4 cell counts both at M6 and M12. Conclusion In routinely monitored patients on an NNRTI-based first-line ART, on-going low-level HIV-RNA replication was associated with a poor immune outcome in patients who had detectable levels of the virus after one year of ART.
Resumo:
Positive-strand RNA virus genomes are substrates for translation, RNA replication, and encapsidation. To identify host factors involved in these functions, we used the ability of brome mosaic virus (BMV) RNA to replicate in yeast. We report herein identification of a mutation in the essential yeast gene DED1 that inhibited BMV RNA replication but not yeast growth. DED1 encodes a DEAD (Asp-Glu-Ala-Asp)-box RNA helicase required for translation initiation of all yeast mRNAs. Inhibition of BMV RNA replication by the mutant DED1 allele (ded1–18) resulted from inhibited expression of viral polymerase-like protein 2a, encoded by BMV RNA2. Inhibition of RNA2 translation was selective, with no effect on general cellular translation or translation of BMV RNA1-encoded replication factor 1a, and was independent of p20, a cellular antagonist of DED1 function in translation. Inhibition of RNA2 translation in ded1–18 yeast required the RNA2 5′ noncoding region (NCR), which also conferred a ded1–18-specific reduction in expression on a reporter gene mRNA. Comparison of the similar RNA1 and RNA2 5′ NCRs identified a 31-nucleotide RNA2-specific region that was required for the ded1–18-specific RNA2 translation block and attenuated RNA2 translation in wild-type yeast. Further comparisons and RNA structure predictions suggest a modular arrangement of replication and translation signals in RNA1 and RNA2 5′ NCRs that appears conserved among bromoviruses. The 5′ attenuator and DED1 dependence of RNA2 suggest that, despite its divided genome, BMV regulates polymerase translation relative to other replication factors, just as many single-component RNA viruses use translational read-through and frameshift mechanisms to down-regulate polymerase. The results show that a DEAD-box helicase can selectively activate translation of a specific mRNA and may provide a paradigm for translational regulation by other members of the ubiquitous DEAD-box RNA helicase family.
Resumo:
Alphaviruses are positive-strand RNA viruses that can mediate efficient cytoplasmic gene expression in insect and vertebrate cells. Through recombinant DNA technology, the alphavirus RNA replication machinery has been engineered for high-level expression of heterologous RNAs and proteins. Amplification of replication-competent alpha-virus RNAs (replicons) can be initiated by RNA or DNA transfection and a variety of packaging systems have been developed for producing high titers of infectious viral particles. Although normally cytocidal for vertebrate cells, variants with adaptive mutations allowing noncytopathic replication have been isolated from persistently infected cultures or selected using a dominant selectable marker. Such mutations have been mapped and used to create new alphavirus vectors for noncytopathic gene expression in mammalian cells. These vectors allow long-term expression at moderate levels and complement previous vectors designed for short-term high-level expression. Besides their use for a growing number of basic research applications, recombinant alphavirus RNA replicons may also facilitate genetic vaccination and transient gene therapy.
Resumo:
We have previously developed replicon vectors derived from the Australian flavivirus Kunjin that have a unique noncytopathic nature and have been shown to direct prolonged high-level expression of encoded heterologous genes in vitro and in vivo and to induce strong and long-lasting immune responses to encoded immunogens in mice. To facilitate further applications of these vectors in the form of virus-like particles (VLPs), we have now generated a stable BHK packaging cell line, tetKUNCprME, carrying a Kunjin structural gene cassette under the control of a tetracycline-inducible promoter. Withdrawal of tetracycline from the medium resulted in production of Kunjin structural proteins that were capable of packaging transfected and self-amplified Kunjin replicon RNA into the secreted VLPs at titers of up to 1.6 x 10(9) VLPs per ml. Furthermore, secreted KUN replicon VLPs from tetKUNCprME cells could be harvested continuously for as long as 10 days after RNA transfection, producing a total yield of more than 1010 VLPs per 106 transfected cells. Passaging of VLPs on Vero cells or intracerebral injection into 2- to 4-day-old suckling mice illustrated the complete absence of any infectious Kunjin virus. tetKUNCprME cells were also capable of packaging replicon RNA from closely and distantly related flaviviruses, West Nile virus and dengue virus type 2, respectively. The utility of high-titer KUN replicon VLPs was demonstrated by showing increasing CD8(+)-T-cell responses to encoded foreign protein with increasing doses of KUN VLPs. A single dose of 2.5 x 10(7) VLPs carrying the human respiratory syncytial virus M2 gene induced 1,400 CD8 T cells per 10(6) splenocytes in an ex vivo gamma interferon enzyme-linked immunospot assay. The packaging cell line thus represents a significant advance in the development of the noncytopathic Kunjin virus replicon-based gene expression system and may be widely applicable to the basic studies of flavivirus RNA packaging and virus assembly as well as to the development of gene expression systems based on replicons from different flaviviruses.
Resumo:
The two sets of connected membranes induced in Kunjin virus-infected cells are characterized by the presence of NS3 helicase/protease in both, and by RNA-dependent RNA polymerase (RdRp) activity plus the associated double-stranded RNA (dsRNA) template in vesicle packets (VP), or by the absence of both the VP-specific markers in the convoluted membranes/paracrystalline arrays (CM/PC). Attempts were made to separate flavivirus-induced membranes by sedimentation or flotation analyses in density gradients of sucrose or iodixanol, respectively, after treatment of cell lysates by sonication, osmotic shock, or tryptic digestion. Only osmotic shock treatment provided suggestive evidence of separation. This was explored by flow cytometry analysis (FCA) of RdRp active membrane fractions from a sucrose gradient, using dual fluorescent labelling via antibodies to NS3 and dsRNA. FCA revealed the presence of a dual labelled membrane population indicative of VP, and in a faster sedimenting fraction a membrane population able to be labelled only in NS3, representative of CM/PC and associated (R)ER. It was postulated that osmotic shock ruptured the bounding membrane of the VP, releasing the enclosed small vesicles associated with the Kunjin virus replication complex characterized previously. Notably, the presence of the full spectrum of nonstructural proteins in some membrane fractions was not a reliable marker for RdRp activity. These experiments may provide the opportunity for isolation of relatively pure flavivirus replication complexes in their native membrane-associated state by fluorescence-activated cell sorting. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The West Nile virus (WNV) nonstructural protein NS1 is a protein of unknown function that is found within, associated with, and secreted from infected cells. We systematically investigated the kinetics of NS1 secretion in vitro and in vivo to determine the potential use of this protein as a diagnostic marker and to analyze NS1 secretion in relation to the infection cycle. A sensitive antigen capture enzyme-linked immunosorbent assay (ELISA) for detection of WNW NS1 (polyclonal-ACE) was developed, as well as a capture ELISA for the specific detection of NS1 multimers (4G4-ACE). The 4G4-ACE detected native NS1 antigens at high sensitivity, whereas the polyclonal-ACE had a higher specificity for recombinant forms of the protein. Applying these assays we found that only a small fraction of intracellular NS1 is secreted and that secretion of NS1 in tissue culture is delayed compared to the release of virus particles. In experimentally infected hamsters, NS1 was detected in the serum between days 3 and 8 postinfection, peaking on day 5, the day prior to the onset of clinical disease; immunoglobulin M (IgM) antibodies were detected at low levels on day 5 postinfection. Although real-time PCR gave the earliest indication of infection (day 1), the diagnostic performance of the 4G4-ACE was comparable to that of real-time PCR during the time period when NS1 was secreted. Moreover, the 4G4-ACE was found to be superior in performance to both the IgM and plaque assays during this time period, suggesting that NS1 is a viable early diagnostic marker of WNV infection.
Resumo:
A common feature associated with the replication of most RNA viruses is the formation of a unique membrane environment encapsulating the viral replication complex. For their part, flaviviruses are no exception, whereupon infection causes a dramatic rearrangement and induction of unique membrane structures within the cytoplasm of infected cells. These virus-induced membranes, termed paracrystalline arrays, convoluted membranes, and vesicle packets, all appear to have specific functions during replication and are derived from different organelles within the host cell. The aim of this study was to identify which protein(s) specified by the Australian strain of West Nile virus, Kunjin virus (KUNV), are responsible for the dramatic membrane alterations observed during infection. Thus, we have shown using immunolabeling of ultrathin cryosections of transfected cells that expression of the KUNV polyprotein intermediates NS4A-4B and NS213-34A, as well as that of individual NS4A proteins with and without the C-terminal transmembrane domain 2K, resulted in different degrees of rearrangement of cytoplasmic membranes. The formation of the membrane structures characteristic for virus infection required coexpression of an NS4A-NS4B cassette with the viral protease NS2B-3pro which was shown to be essential for the release of the individual NS4A and NS4B proteins. Individual expression of NS4A protein retaining the C-terminal transmembrane domain 2K resulted in the induction of membrane rearrangements most resembling virus-induced structures, while removal of the 2K domain led to a less profound membrane rearrangement but resulted in the redistribution of the NS4A protein to the Golgi apparatus. The results show that cleavage of the KUNV polyprotein NS4A-4B by the viral protease is the key initiation event in the induction of membrane rearrangement and that the NS4A protein intermediate containing the uncleaved C-terminal transmembrane domain plays an essential role in these membrane rearrangements.
Resumo:
We describe the development of a capture enzyme-linked immunosorbent assay for the detection of the dengue virus nonstructural protein NS1. The assay employs rabbit polyclonal and monoclonal antibodies as the capture and detection antibodies, respectively. Immunoaffinity-purified NS1 derived from dengue 2 virus-infected cells was used as a standard to establish a detection sensitivity of approximately 4 ng/ml for an assay employing monoclonal antibodies recognizing a dengue 2 serotype-specific epitope. A number of serotype cross-reactive monoclonal antibodies were also shown to be suitable probes for the detection of NS1 expressed by the remaining three dengue virus serotypes. Examination of clinical samples demonstrated that the assay was able to detect NS1 with minimal interference from serum components at the test dilutions routinely used, suggesting that it could form the basis of a useful additional diagnostic test for dengue virus infection. Furthermore, quantitation of NS1 levels in patient sera may prove to be a valuable surrogate marker for viremia. Surprisingly high levels of NS1, as much as 15 mu g/ml, were found in acute-phase sera taken hom some of the patients experiencing serologically confirmed dengue 2 virus secondary infections but was not detected in the convalescent sera of these patients. In contrast, NS1 could not be detected in either acute-phase or convalescent serum samples taken from patients with serologically confirmed primary infection. The presence of high levels of secreted NS1 in the sera of patients experiencing secondary dengue virus infections, and in the context of an anamnestic antibody response, suggests that NS1 may contribute significantly to the formation of the circulating immune complexes that are suspected to play an important role in the pathogenesis of severe dengue disease.
Resumo:
Hepatitis C virus [HCV] infects 170 million people worldwide. We investigated interactions between HCV proteins and cellular proteins involved in autophagy and lipid metabolism. We sought to develop an infection model using patient derived human serum containing HCV and human hepatocytes, Huh7 cells. Using the model, we have shown intracellular expression of incoming HCV RNA (5′ UTR region and region spanning the E1/E2 glycoproteins), expression of the HCV proteins, core and NS5B, and a cellular response to HCV infection. These data suggests this model can be used to analyse the early stage of HCV infection. HCV utilises the autophagy pathway to both establish infection and to complete its life cycle. We investigated HCV interaction with the early stage autophagy protein ATG5. We found that although ATG5 mRNA is unchanged in HCV infected cells, protein expression of ATG5 is significantly upregulated. These data indicated HCV controls the post-transcriptional regulation of ATG5. We used the upstream open reading frame (uORF) and the 5′ UTR region of ATG5 to examine the post-transcriptional regulation. Our data suggest HCV RNA replication either directly or indirectly causes post-transcriptional regulation of the early autophagy protein, ATG5 in a 5′ UTR and uORF independent manner. HCV infection leads to an increase in SREBP controlled genes e.g. HMG-CoA Reductase, cholesterol, LDL and fatty acid synthesis. We hypothesised that HCV infection causes the activation of SREBP pathway by interacting directly or indirectly with proteins involved in the initiation of the pathway. We sought to determine if HCV interacts with SCAP or INSIG. We confirmed a change in LD distribution and HMG-CoA reductase activity as a result of HCV RNA replication. Significantly, we show SCAP protein expression was also altered during HCV RNA replication and HCV core protein possibly interacts with SCAP.
Resumo:
Complementary sequences at the 5′ and 3′ ends of the dengue virus RNA genome are essential for viral replication, and are believed to cyclise the genome through long-range base pairing in cis. Although consistent with evidence in the literature, this view neglects possible biologically active multimeric forms that are equally consistent with the data. Here, we propose alternative multimeric structures, and suggest that multigenome noncovalent concatemers are more likely to exist under cellular conditions than single cyclised monomers. Concatemers provide a plausible mechanism for the dengue virus to overcome the single-stranded (+)-sense RNA virus dilemma, and can potentially assist genome transport from the virus-induced vesicles into the cytosol.
Resumo:
Physalis mottle virus (PhMV) belongs to the tymogroup of positive-strand RNA viruses with a genome size of 6 kb. Crude membrane preparations from PhMV-infected Nicotiana glutinosa plants catalyzed the synthesis of PhMV genomic RNA from endogenously bound template. Addition of exogenous genomic RNA enhanced the synthesis which was specifically inhibited by the addition of sense and antisense transcripts corresponding to 3' terminal 242 nucleotides as well as the 5' terminal 458 nucleotides of PhMV genomic RNA while yeast tRNA or ribosomal RNA failed to inhibit the synthesis. This specific inhibition suggested that the 5' and 3' non-coding regions of PhMV RNA might play an important role in viral replication.
Resumo:
Identification of viral encoded proteins that interact with RNA-dependent RNA polymerase (RdRp) is an important step towards unraveling the mechanism of replication. Sesbania mosaic virus (SeMV) RdRp was shown to interact strongly with p10 domain of polyprotein 2a and moderately with the protease domain. Mutational analysis suggested that the C-terminal disordered domain of RdRp is involved in the interaction with p10. Coexpression of full length RdRp and p10 resulted in formation of RdRp-p10 complex which showed significantly higher polymerase activity than RdRp alone. Interestingly, C Delta 43 RdRp also showed a similar increase in activity. Thus, p10 acts as a positive regulator of RdRp by interacting with the C-terminal disordered domain of RdRp. (C) 2014 The Authors. Published by Elsevier B.V.
Resumo:
RNA secondary structures in the 3'untranslated regions (3'UTR) of the viruses of the family Flaviviridae, previously identified as essential (promoters) or beneficial (enhancers) for replication, have been analysed. Duplicated enhancer elements are revealed as a global feature in the evolution of the 3'UTR of distantly related viruses within the genera Flavivirus and Pestivirus. For the flaviviruses, duplicated structures occur in the 3'UTR of all four distantly related ecological virus subgroups (tick-borne, mosquito-borne, no known vector and insect-specific flaviviruses (ISFV). RNA structural differences distinguish tick-borne flaviviruses with discrete pathogenetic characteristics. For Aedes- and Culex-associated ISFV, secondary RNA structures with different conformations display numerous short ssRNA direct repeats, exposed as loops and bulges. Long quadruplicate regions comprise almost the entire 3'UTR of Culex-associated ISFV. Extended duplicated sequence and associated RNA structures were also discovered in the 3'UTR of pestiviruses. In both the Flavivirus and Pestivirus genera, duplicated RNA structures were localized to the enhancer regions of the 3'UTR suggesting an adaptive role predominantly in wild-type viruses. We propose sequence reiteration might act as a scaffold for dimerization of proteins involved in assembly of viral replicase complexes. Numerous nucleotide repeats exposed as loops/bulges might also interfere with host immune responses acting as a molecular sponge to sequester key host proteins or microRNAs.