47 resultados para Ritonavir
Resumo:
BACKGROUND: Unconjugated hyperbilirubinemia results from Gilbert syndrome and from antiretroviral therapy (ART) containing protease inhibitors. An understanding of the interaction between genetic predisposition and ART may help to identify individuals at highest risk for developing jaundice. METHODS: We quantified the contribution of UGT1A1*28 and ART to hyperbilirubinemia by longitudinally modeling 1386 total bilirubin levels in 96 human immunodeficiency virus (HIV)-infected individuals during a median of 6 years. RESULTS: The estimated average bilirubin level was 8.8 micromol/L (0.51 mg/dL). Atazanavir increased bilirubin levels by 15 mu mol/L (0.87 mg/dL), and indinavir increased bilirubin levels by 8 micromol/L (0.46 mg/dL). Ritonavir, lopinavir, saquinavir, and nelfinavir had no or minimal effect on bilirubin levels. Homozygous UGT1A1*28 increased bilirubin levels by 5.2 micromol/L (0.3 mg/dL). As a consequence, 67% of individuals homozygous for UGT1A1*28 and receiving atazanavir or indinavir had > or =2 episodes of hyperbilirubinemia in the jaundice range (>43 micromol/L [>2.5 mg/dL]), versus 7% of those with the common allele and not receiving either of those protease inhibitors (P<.001). Efavirenz resulted in decreased bilirubin levels, which is consistent with the induction of UDP-glucuronosyltransferase 1A1. CONCLUSIONS: Genotyping for UGT1A1*28 before initiation of ART would identify HIV-infected individuals at risk for hyperbilirubinemia and decrease episodes of jaundice.
Resumo:
BACKGROUND: Blood lipid abnormalities in patients on highly active antiretroviral therapy (HAART) have been associated with exposure to protease inhibitors (PIs), particularly ritonavir. First therapy with a non-nucleoside reverse transcriptase inhibitor (NNRTI) leads to relatively favourable lipid profiles. We report on medium-term lipid profiles (up to 5 years) for antiretroviral-naive patients starting NNRTI- and PI-based HAART in the Swiss HIV Cohort Study. METHODS: Since April 2000, blood samples taken at visits scheduled every 6 months have been analysed for cholesterol and triglyceride concentrations. For 1065 antiretroviral-naive patients starting HAART after April 2000, we estimated changes in concentration over time using multivariate linear regression with adjustment for baseline covariates, use of lipid-lowering drugs and whether the sample was taken in a fasting state. RESULTS: Non-high density lipoprotein (HDL) cholesterol levels increase with increasing exposure to either PI- or NNRTI-based therapy, HDL cholesterol levels increase and triglyceride levels decrease with increasing exposure to NNRTI-based therapy, whereas triglyceride levels increase with increasing exposure to PI-based therapy. Between NNRTI-based therapies, there is a slight difference in triglyceride levels, which tend to increase with increasing exposure to efavirenz and to decrease with increasing exposure to nevirapine. Of the three common PI-based therapies, nelfinavir appears to have a relatively favourable lipid profile, with little change with increasing exposure. Of the other two PI therapies, lopinavir with ritonavir has a more favourable profile than indinavir with ritonavir, with smaller increases in both non-HDL cholesterol and triglycerides and an increase in HDL cholesterol. Increasing exposure to abacavir is associated with a decrease in the level of triglycerides. CONCLUSION: In general, NNRTI-based therapy is associated with a more favourable lipid profile than PI-based therapy, but different PI-based therapies are associated with very different lipid profiles. Nelfinavir appears to have a relatively favourable lipid profile. Of the two boosted PI therapies, lopinavir appears to have a more favourable lipid profile than indinavir.
Resumo:
BACKGROUND: Single-nucleotide polymorphisms in genes involved in lipoprotein and adipocyte metabolism may explain why dyslipidemia and lipoatrophy occur in some but not all antiretroviral therapy (ART)-treated individuals. METHODS: We evaluated the contribution of APOC3 -482C-->T, -455T-->C, and 3238C-->G; epsilon 2 and epsilon 4 alleles of APOE; and TNF -238G-->A to dyslipidemia and lipoatrophy by longitudinally modeling >2600 lipid determinations and 2328 lipoatrophy assessments in 329 ART-treated patients during a median follow-up period of 3.4 years. RESULTS: In human immunodeficiency virus (HIV)-infected individuals, the effects of variant alleles of APOE on plasma cholesterol and triglyceride levels and of APOC3 on plasma triglyceride levels were comparable to those reported in the general population. However, when treated with ritonavir, individuals with unfavorable genotypes of APOC3 and [corrected] APOE were at risk of extreme hypertriglyceridemia. They had median plasma triglyceride levels of 7.33 mmol/L, compared with 3.08 mmol/L in the absence of ART. The net effect of the APOE*APOC3*ritonavir interaction was an increase in plasma triglyceride levels of 2.23 mmol/L. No association between TNF -238G-->A and lipoatrophy was observed. CONCLUSIONS: Variant alleles of APOE and APOC3 contribute to an unfavorable lipid profile in patients with HIV. Interactions between genotypes and ART can lead to severe hyperlipidemia. Genetic analysis may identify patients at high risk for severe ritonavir-associated hypertriglyceridemia.
Resumo:
OBJECTIVE: To determine whether differences in short-term virologic failure among commonly used antiretroviral therapy (ART) regimens translate to differences in clinical events in antiretroviral-naïve patients initiating ART. DESIGN: Observational cohort study of patients initiating ART between January 2000 and December 2005. SETTING: The Antiretroviral Therapy Cohort Collaboration (ART-CC) is a collaboration of 15 HIV cohort studies from Canada, Europe, and the United States. STUDY PARTICIPANTS: A total of 13 546 antiretroviral-naïve HIV-positive patients initiating ART with efavirenz, nevirapine, lopinavir/ritonavir, nelfinavir, or abacavir as third drugs in combination with a zidovudine and lamivudine nucleoside reverse transcriptase inhibitor backbone. MAIN OUTCOME MEASURES: Short-term (24-week) virologic failure (>500 copies/ml) and clinical events within 2 years of ART initiation (incident AIDS-defining event, death, and a composite measure of these two outcomes). RESULTS: Compared with efavirenz as initial third drug, short-term virologic failure was more common with all other third drugs evaluated; nevirapine (adjusted odds ratio = 1.87, 95% confidence interval (CI) = 1.58-2.22), lopinavir/ritonavir (1.32, 95% CI = 1.12-1.57), nelfinavir (3.20, 95% CI = 2.74-3.74), and abacavir (2.13, 95% CI = 1.82-2.50). However, the rate of clinical events within 2 years of ART initiation appeared higher only with nevirapine (adjusted hazard ratio for composite outcome measure 1.27, 95% CI = 1.04-1.56) and abacavir (1.22, 95% CI = 1.00-1.48). CONCLUSION: Among antiretroviral-naïve patients initiating therapy, between-ART regimen, differences in short-term virologic failure do not necessarily translate to differences in clinical outcomes. Our results should be interpreted with caution because of the possibility of residual confounding by indication.
Resumo:
BACKGROUND: Little is known about time trends, predictors, and consequences of changes made to antiretroviral therapy (ART) regimens early after patients initially start treatment. METHODS: We compared the incidence of, reasons for, and predictors of treatment change within 1 year after starting combination ART (cART), as well as virological and immunological outcomes at 1 year, among 1866 patients from the Swiss HIV Cohort Study who initiated cART during 2000--2001, 2002--2003, or 2004--2005. RESULTS: The durability of initial regimens did not improve over time (P = .15): 48.8% of 625 patients during 2000--2001, 43.8% of 607 during 2002--2003, and 44.3% of 634 during 2004--2005 changed cART within 1 year; reasons for change included intolerance (51.1% of all patients), patient wish (15.4%), physician decision (14.8%), and virological failure (7.1%). An increased probability of treatment change was associated with larger CD4+ cell counts, larger human immunodeficiency virus type 1 (HIV-1) RNA loads, and receipt of regimens that contained stavudine or indinavir/ritonavir, but a decreased probability was associated with receipt of regimens that contained tenofovir. Treatment discontinuation was associated with larger CD4+ cell counts, current use of injection drugs, and receipt of regimens that contained nevirapine. One-year outcomes improved between 2000--2001 and 2004--2005: 84.5% and 92.7% of patients, respectively, reached HIV-1 RNA loads of <50 copies/mL and achieved median increases in CD4+ cell counts of 157.5 and 197.5 cells/microL, respectively (P < .001 for all comparisons). CONCLUSIONS: Virological and immunological outcomes of initial treatments improved between 2000--2001 and 2004--2005, irrespective of uniformly high rates of early changes in treatment across the 3 study intervals.
Resumo:
BACKGROUND: Efavirenz and lopinavir boosted with ritonavir are both recommended as first-line therapies for patients with HIV when combined with two nucleoside reverse transcriptase inhibitors. It is uncertain which therapy is more effective for patients starting therapy with an advanced infection. METHODS: We estimated the relative effect of these two therapies on rates of virological and immunological failure within the Swiss HIV Cohort Study and considered whether estimates depended on the CD4(+) T-cell count when starting therapy. We defined virological failure as either an incomplete virological response or viral rebound after viral suppression and immunological failure as failure to achieve an expected CD4(+) T-cell increase calculated from EuroSIDA statistics. RESULTS: Patients starting efavirenz (n=660) and lopinavir (n=541) were followed for a median of 4.5 and 3.1 years, respectively. Virological failure was less likely for patients on efavirenz, with the adjusted hazard ratio (95% confidence interval) of 0.63 (0.50-0.78) then multiplied by a factor of 1.00 (0.90-1.12) for each 100 cells/mm(3) decrease in CD4(+) T-cell count below the mean when starting therapy. Immunological failure was also less likely for patients on efavirenz, with the adjusted hazard ratio of 0.68 (0.51-0.91) then multiplied by a factor of 1.29 (1.14-1.46) for each 100 cells/mm(3) decrease in CD4(+) T-cell count below the mean when starting therapy. CONCLUSIONS: Virological failure is less likely with efavirenz regardless of the CD4(+) T-cell count when starting therapy. Immunological failure is also less likely with efavirenz; however, this advantage disappears if patients start therapy with a low CD4(+) T-cell count.
Resumo:
BACKGROUND There is debate over using tenofovir or zidovudine alongside lamivudine in second-line antiretroviral therapy (ART) following stavudine failure. We analyzed outcomes in cohorts from South Africa, Zambia and Zimbabwe METHODS: Patients aged ≥16 years who switched from a first-line regimen including stavudine to a ritonavir-boosted lopinavir-based second-line regimen with lamivudine or emtricitabine and zidovudine or tenofovir in seven ART programs in southern Africa were included. We estimated the causal effect of receiving tenofovir or zidovudine on mortality and virological failure using Cox proportional hazards marginal structural models. Its parameters were estimated using inverse probability of treatment weights. Baseline characteristics were age, sex, calendar year and country. CD4 cell count, creatinine and hemoglobin levels were included as time-dependent confounders. RESULTS 1,256 patients on second-line ART, including 958 on tenofovir, were analyzed. Patients on tenofovir were more likely to have switched to second-line ART in recent years, spent more time on first-line ART (33 vs. 24 months) and had lower CD4 cell counts (172 vs. 341 cells/μl) at initiation of second-line ART. The adjusted hazard ratio comparing tenofovir with zidovudine was 1.00 (95% confidence interval 0.59-1.68) for virologic failure and 1.40 (0.57-3.41) for death. CONCLUSIONS We did not find any difference in treatment outcomes between patients on tenofovir or zidovudine; however, the precision of our estimates was limited. There is an urgent need for randomized trials to inform second-line ART strategies in resource-limited settings.
Resumo:
Objectives: To determine HIV-1 RNA in cerebrospinal fluid (CSF) of successfully treated patients and to evaluate if combination antiretroviral treatments with higher central nervous system penetration-effectiveness (CPE) achieve better CSF viral suppression. Methods: Viral loads (VLs) and drug concentrations of lopinavir, atazanavir, and efavirenz were measured in plasma and CSF. The CPE was calculated using 2 different methods. Results: The authors analyzed 87 CSF samples of 60 patients. In 4 CSF samples, HIV-1 RNA was detectable with 43–82 copies per milliliter. Median CPE in patients with detectable CSF VL was significantly lower compared with individuals with undetectable VL: CPE of 1.0 (range, 1.0–1.5) versus 2.3 (range, 1.0–3.5) using the method of 2008 (P = 0.011) and CPE of 6 (range, 6–8) versus 8 (range, 5–12) using the method of 2010 (P = 0.022). The extrapolated CSF trough levels for atazanavir (n = 12) were clearly above the 50% inhibitory concentration (IC50) in only 25% of samples; both patients on atazanavir/ritonavir with detectable CSF HIV-1 RNA had trough levels in the range of the presumed IC50. The extrapolated CSF trough level for lopinavir (n = 42) and efavirenz (n = 18) were above the IC50 in 98% and 78%, respectively, of samples, including the patients with detectable CSF HIV-1 RNA. Conclusions: This study suggests that treatment regimens with high intracerebral efficacy reflected by a high CPE score are essential to achieve CSF HIV-1 RNA suppression. The CPE score including all drug components was a better predictor for treatment failure in the CSF than the sole concentrations of protease inhibitor or nonnucleoside reverse transcriptase inhibitor in plasma or CSF.
Resumo:
Objectives: Etravirine (ETV) is metabolized by cytochrome P450 (CYP) 3A, 2C9, and 2C19. Metabolites are glucuronidated by uridine diphosphate glucuronosyltransferases (UGT). To identify the potential impact of genetic and non-genetic factors involved in ETV metabolism, we carried out a two-step pharmacogenetics-based population pharmacokinetic study in HIV-1 infected individuals. Materials and methods: The study population included 144 individuals contributing 289 ETV plasma concentrations and four individuals contributing 23 ETV plasma concentrations collected in a rich sampling design. Genetic variants [n=125 single-nucleotide polymorphisms (SNPs)] in 34 genes with a predicted role in ETV metabolism were selected. A first step population pharmacokinetic model included non-genetic and known genetic factors (seven SNPs in CYP2C, one SNP in CYP3A5) as covariates. Post-hoc individual ETV clearance (CL) was used in a second (discovery) step, in which the effect of the remaining 98 SNPs in CYP3A, P450 cytochrome oxidoreductase (POR), nuclear receptor genes, and UGTs was investigated. Results: A one-compartment model with zero-order absorption best characterized ETV pharmacokinetics. The average ETV CL was 41 (l/h) (CV 51.1%), the volume of distribution was 1325 l, and the mean absorption time was 1.2 h. The administration of darunavir/ritonavir or tenofovir was the only non-genetic covariate influencing ETV CL significantly, resulting in a 40% [95% confidence interval (CI): 13–69%] and a 42% (95% CI: 17–68%) increase in ETV CL, respectively. Carriers of rs4244285 (CYP2C19*2) had 23% (8–38%) lower ETV CL. Co-administered antiretroviral agents and genetic factors explained 16% of the variance in ETV concentrations. None of the SNPs in the discovery step influenced ETV CL. Conclusion: ETV concentrations are highly variable, and co-administered antiretroviral agents and genetic factors explained only a modest part of the interindividual variability in ETV elimination. Opposing effects of interacting drugs effectively abrogate genetic influences on ETV CL, and vice-versa.
Resumo:
Objective: To determine changes of cerebrospinal fluid (CSF) biomarkers of patients on monotherapy with lopinavir/ritonavir. Design: The Monotherapy Switzerland/Thailand study (MOST) trial compared monotherapy with ritonavir-boosted lopinavir with continued therapy. The trial was prematurely stopped due to virological failure in six patients on monotherapy. It, thus, offers a unique opportunity to assess brain markers in the early stage of HIV virological escape. Methods: Sixty-five CSF samples (34 on continued therapy and 31 on monotherapy) from 49 HIV-positive patients enrolled in MOST. Using enzyme-linked immunosorbent assay, we determined the CSF concentration of S100B (astrocytosis), neopterin (inflammation), total Tau (tTau), phosphorylated Tau (pTau), and amyloid-β 1–42 (Aβ), the latter three indicating neuronal damage. Controls were CSF samples of 29 HIV-negative patients with Alzheimer dementia. Results: In the CSF of monotherapy, concentrations of S100B and neopterin were significantly higher than in continued therapy (P = 0.006 and P = 0.013, respectively) and Alzheimer dementia patients (P < 0.0001 and P = 0.0005, respectively). In Alzheimer dementia, concentration of Aβ was lower than in monotherapy (P = 0.005) and continued therapy (P = 0.016) and concentrations of tTau were higher than in monotherapy (P = 0.019) and continued therapy (P = 0.001). There was no difference in pTau among the three groups. After removal of the 16 CSF with detectable viral load in the blood and/or CSF, only S100B remained significantly higher in monotherapy than in the two other groups. Conclusion: Despite full viral load-suppression in blood and CSF, antiretroviral monotherapy with lopinavir/ritonavir can raise CSF levels of S100B, suggesting astrocytic damage.
Resumo:
OBJECTIVES Tenofovir is associated with reduced renal function. It is not clear whether patients can be expected to fully recover their renal function if tenofovir is discontinued. METHODS We calculated the estimated glomerular filtration rate (eGFR) for patients in the Swiss HIV Cohort Study remaining on tenofovir for at least 1 year after starting a first antiretroviral therapy regimen with tenofovir and either efavirenz or the ritonavir-boosted protease inhibitor lopinavir, atazanavir or darunavir. We estimated the difference in eGFR slope between those who discontinued tenofovir after 1 year and those who remained on tenofovir. RESULTS A total of 1049 patients on tenofovir for at least 1 year were then followed for a median of 26 months, during which time 259 patients (25%) discontinued tenofovir. After 1 year on tenofovir, the difference in eGFR between those starting with efavirenz and those starting with lopinavir, atazanavir and darunavir was - 0.7 [95% confidence interval (CI) -2.3 to 0.8], -1.4 (95% CI -3.2 to 0.3) and 0.0 (95% CI -1.7 to 1.7) mL/min/1.73 m(2) , respectively. The estimated linear rate of decline in eGFR on tenofovir was -1.1 (95% CI -1.5 to -0.8) mL/min/1.73 m(2) per year and its recovery after discontinuing tenofovir was 2.1 (95% CI 1.3 to 2.9) mL/min/1.73 m(2) per year. Patients starting tenofovir with either lopinavir or atazanavir appeared to have the same rates of decline and recovery as those starting tenofovir with efavirenz. CONCLUSIONS If patients discontinue tenofovir, clinicians can expect renal function to recover more rapidly than it declined.
Resumo:
Introduction: HIV-1 viral escape in the cerebrospinal fluid (CSF) despite viral suppression in plasma is rare [1,2]. We describe the case of a 50-year-old HIV-1 infected patient who was diagnosed with HIV-1 in 1995. Antiretroviral therapy (ART) was started in 1998 with a CD4 T cell count of 71 cells/ìL and HIV-viremia of 46,000 copies/mL. ART with zidovudine (AZT), lamivudine (3TC) and efavirenz achieved full viral suppression. After the patient had interrupted ART for two years, treatment was re-introduced with tenofovir (TDF), emtricitabin (FTC) and ritonavir boosted atazanavir (ATVr). This regimen suppressed HIV-1 in plasma for nine years and CD4 cells stabilized around 600 cells/ìL. Since July 2013, the patient complained about severe gait ataxia and decreased concentration. Materials and Methods: Additionally to a neurological examination, two lumbar punctures, a cerebral MRI and a neuropsycological test were performed. HIV-1 viral load in plasma and in CSF was quantified using Cobas TaqMan HIV-1 version 2.0 (Cobas Ampliprep, Roche diagnostic, Basel, Switzerland) with a detection limit of 20 copies/mL. Drug resistance mutations in HIV-1 reverse transcriptase and protease were evaluated using bulk sequencing. Results: The CSF in January 2014 showed a pleocytosis with 75 cells/ìL (100% mononuclear) and 1,184 HIV-1 RNA copies/mL, while HIV-1 in plasma was below 20 copies/mL. The resistance testing of the CSF-HIV-1 RNA showed two NRTI resistance-associated mutations (M184V and K65R) and one NNRTI resistance-associated mutation (K103N). The cerebral MRI showed increased signal on T2-weighted images in the subcortical and periventricular white matter, in the basal ganglia and thalamus. Four months after ART intensification with AZT, 3TC, boosted darunavir and raltegravir, the pleocytosis in CSF cell count normalized to 1 cell/ìL and HIV viral load was suppressed. The neurological symptoms improved; however, equilibrium disturbances and impaired memory persisted. The neuro-psychological evaluation confirmed neurocognitive impairments in executive functions, attention, working and nonverbal memory, speed of information processing, visuospatial abilities and motor skills. Conclusions: HIV-1 infected patients with neurological complaints prompt further investigations of the CSF including measurement of HIV viral load and genotypic resistance testing since isolated replication of HIV with drug resistant variants can rarely occur despite viral suppression in plasma. Optimizing ART by using drugs with improved CNS penetration may achieve viral suppression in CSF with improvement of neurological symptoms.
Resumo:
Inhibitors of the protease of HIV-1 have been used successfully for the treatment of HIV-1-infected patients and AIDS disease. We tested whether these protease inhibitory drugs exerted effects in addition to their antiviral activity. Here, we show in mice infected with lymphocytic choriomeningitis virus and treated with the HIV-1 protease inhibitor ritonavir a marked inhibition of antiviral cytotoxic T lymphocyte (CTL) activity and impaired major histocompatibility complex class I-restricted epitope presentation in the absence of direct effects on lymphocytic choriomeningitis virus replication. A potential molecular target was found: ritonavir selectively inhibited the chymotrypsin-like activity of the 20S proteasome. In view of the possible role of T cell-mediated immunopathology in AIDS pathogenesis, the two mechanisms of action (i.e., reduction of HIV replication and impairment of CTL responses) may complement each other beneficially. Thus, the surprising ability of ritonavir to block the presentation of antigen to CTLs may possibly contribute to therapy of HIV infections but potentially also to the therapy of virally induced immunopathology, autoimmune diseases, and transplantation reactions.
Stochastic processes strongly influence HIV-1 evolution during suboptimal protease-inhibitor therapy
Resumo:
It has long been assumed that HIV-1 evolution is best described by deterministic evolutionary models because of the large population size. Recently, however, it was suggested that the effective population size (Ne) may be rather small, thereby allowing chance to influence evolution, a situation best described by a stochastic evolutionary model. To gain experimental evidence supporting one of the evolutionary models, we investigated whether the development of resistance to the protease inhibitor ritonavir affected the evolution of the env gene. Sequential serum samples from five patients treated with ritonavir were used for analysis of the protease gene and the V3 domain of the env gene. Multiple reverse transcription–PCR products were cloned, sequenced, and used to construct phylogenetic trees and to calculate the genetic variation and Ne. Genotypic resistance to ritonavir developed in all five patients, but each patient displayed a unique combination of mutations, indicating a stochastic element in the development of ritonavir resistance. Furthermore, development of resistance induced clear bottleneck effects in the env gene. The mean intrasample genetic variation, which ranged from 1.2% to 5.7% before treatment, decreased significantly (P < 0.025) during treatment. In agreement with these findings, Ne was estimated to be very small (500–15,000) compared with the total HIV-1 RNA copy number. This study combines three independent observations, strong population bottlenecking, small Ne, and selection of different combinations of protease-resistance mutations, all of which indicate that HIV-1 evolution is best described by a stochastic evolutionary model.
Resumo:
The vast majority of HIV-1 infections in Africa are caused by the A and C viral subtypes rather than the B subtype prevalent in the United States and Western Europe. Genomic differences between subtypes give rise to sequence variations in the encoded proteins, including the HIV-1 protease. Because some amino acid polymorphisms occur at sites that have been associated with drug resistance in the B subtype, it is important to assess the effectiveness of protease inhibitors that have been developed against different subtypes. Here we report the enzymatic characterization of HIV-1 proteases with sequences found in drug-naïve Ugandan adults. The A protease used in these studies differs in seven positions (I13V/E35D/M36I/R41K/R57K/H69K/L89M) in relation to the consensus B subtype protease. Another protease containing a subset of these amino acid polymorphisms (M36I/R41K/H69K/L89M), which are found in subtype C and other HIV subtypes, also was studied. Both proteases were found to have similar catalytic constants, kcat, as the B subtype. The C subtype protease displayed lower Km values against two different substrates resulting in a higher (2.4-fold) catalytic efficiency than the B subtype protease. Indinavir, ritonavir, saquinavir, and nelfinavir inhibit the A and C subtype proteases with 2.5–7-fold and 2–4.5-fold weaker Kis than the B subtype. When all factors are taken into consideration it is found that the C subtype protease has the highest vitality (4–11 higher than the B subtype) whereas the A subtype protease exhibits values ranging between 1.5 and 5. These results point to a higher biochemical fitness of the A and C proteases in the presence of existing inhibitors.