981 resultados para Risk map
Resumo:
Background We investigated the geographical variation of water supply and sanitation indicators (WS&S) and their role to the risk of schistosomiasis and hookworm infection in school age children in West Africa. The aim was to predict large-scale geographical variation in WS&S, quantify the attributable risk of S. haematobium, S. mansoni and hookworm infections due to WS&S and identify communities where sustainable transmission control could be targeted across the region. Methods National cross-sectional household-based demographic health surveys were conducted in 24,542 households in Burkina Faso, Ghana and Mali, in 2003–2006. We generated spatially-explicit predictions of areas without piped water, toilet facilities and finished floors in West Africa, adjusting for household covariates. Using recently published helminth prevalence data we developed Bayesian geostatistical models (MGB) of S. haematobium, S. mansoni and hookworm infection in West Africa including environmental and the mapped outputs for WS&S. Using these models we estimated the effect of WS&S on parasite risk, quantified their attributable fraction of infection, and mapped the risk of infection in West Africa. Findings Our maps show that most areas in West Africa are very poorly served by water supply except in major urban centers. There is a better geographical coverage for toilet availability and improved household flooring. We estimated smaller attributable risks for water supply in S. mansoni (47%) compared to S. haematobium (71%), and 5% of hookworm cases could be averted by improving sanitation. Greater levels of inadequate sanitation increased the risk of schistosomiasis, and increased levels of unsafe water supply increased the risk of hookworm. The role of floor type for S. haematobium infection (21%) was comparable to that of S. mansoni (16%), but was significantly higher for hookworm infection (86%). S. haematobium and hookworm maps accounting for WS&S show small clusters of maximal prevalence areas in areas bordering Burkina Faso and Mali smaller. The map of S. mansoni shows that this parasite is much more wide spread across the north of the Niger River basin than previously predicted. Interpretation Our maps identify areas where the Millennium Development Goal for water and sanitation is lagging behind. Our results show that WS&S are important contributors to the burden of major helminth infections of children in West Africa. Including information about WS&S as well as the “traditional” environmental risk factors in spatial models of helminth risk yielded a substantial gain both in model fit and at explaining the proportion of spatial variance in helminth risk. Mapping the distribution of infection risk adjusted for WS&S allowed the identification of communities in West Africa where integrative preventive chemotherapy and engineering interventions will yield the greatest public health benefits.
Resumo:
Cooperative Systems provide, through the multiplication of information sources over the road, a lot of potential to improve the assessment of the road risk describing a particular driving situation. In this paper, we compare the performance of a cooperative risk assessment approach against a non-cooperative approach; we used an advanced simulation framework, allowing for accurate and detailed, close-to-reality simulations. Risk is estimated, in both cases, with combinations of indicators based on the TTC. For the non-cooperative approach, vehicles are equipped only with an AAC-like forward-facing ranging sensor. On the other hand, for the cooperative approach, vehicles share information through 802.11p IVC and create an augmented map representing their environment; risk indicators are then extracted from this map. Our system shows that the cooperative risk assessment provides a systematic increase of forward warning to most of the vehicles involved in a freeway emergency braking scenario, compared to a non-cooperative system.
Resumo:
Cardiovascular disease (CVD) affects millions of people worldwide and is influenced by numerous factors, including lifestyle and genetics. Expression quantitative trait loci (eQTLs) influence gene expression and are good candidates for CVD risk. Founder-effect pedigrees can provide additional power to map genes associated with disease risk. Therefore, we identified eQTLs in the genetic isolate of Norfolk Island (NI) and tested for associations between these and CVD risk factors. We measured genome-wide transcript levels of blood lymphocytes in 330 individuals and used pedigree-based heritability analysis to identify heritable transcripts. eQTLs were identified by genome-wide association testing of these transcripts. Testing for association between CVD risk factors (i.e., blood lipids, blood pressure, and body fat indices) and eQTLs revealed 1,712 heritable transcripts (p < 0.05) with heritability values ranging from 0.18 to 0.84. From these, we identified 200 cis-acting and 70 trans-acting eQTLs (p < 1.84 × 10(-7)) An eQTL-centric analysis of CVD risk traits revealed multiple associations, including 12 previously associated with CVD-related traits. Trait versus eQTL regression modeling identified four CVD risk candidates (NAAA, PAPSS1, NME1, and PRDX1), all of which have known biological roles in disease. In addition, we implicated several genes previously associated with CVD risk traits, including MTHFR and FN3KRP. We have successfully identified a panel of eQTLs in the NI pedigree and used this to implicate several genes in CVD risk. Future studies are required for further assessing the functional importance of these eQTLs and whether the findings here also relate to outbred populations.
Resumo:
Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10−14, odds ratio = 0.86, 95% confidence interval = 0.82–0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression.
Resumo:
There is a strong genetic risk for late-onset Alzheimer's disease (AD), but so far few gene variants have been identified that reliably contribute to that risk. A newly confirmed genetic risk allele C of the clusterin (CLU) gene variant rs11136000 is carried by ~88% of Caucasians. The C allele confers a 1.16 greater odds of developing late-onset AD than the T allele. AD patients have reductions in regional white matter integrity. We evaluated whether the CLU risk variant was similarly associated with lower white matter integrity in healthy young humans. Evidence of early brain differences would offer a target for intervention decades before symptom onset. We scanned 398 healthy young adults (mean age, 23.6 ± 2.2 years) with diffusion tensor imaging, a variation of magnetic resonance imaging sensitive to white matter integrity in the living brain. We assessed genetic associations using mixed-model regression at each point in the brain to map the profile of these associations with white matter integrity. Each C allele copy of the CLUvariant was associated with lower fractional anisotropy-a widely accepted measure of white matter integrity-in multiple brain regions, including several known to degenerate in AD. These regions included the splenium of the corpus callosum, the fornix, cingulum, and superior and inferior longitudinal fasciculi in both brain hemispheres. Young healthy carriers of the CLU gene risk variant showed a distinct profile of lower white matter integrity that may increase vulnerability to developing AD later in life.
Resumo:
Background Bloodstream infections resulting from intravascular catheters (catheter-BSI) in critical care increase patients' length of stay, morbidity and mortality, and the management of these infections and their complications has been estimated to cost the NHS annually £19.1–36.2M. Catheter-BSI are thought to be largely preventable using educational interventions, but guidance as to which types of intervention might be most clinically effective is lacking. Objective To assess the effectiveness and cost-effectiveness of educational interventions for preventing catheter-BSI in critical care units in England. Data sources Sixteen electronic bibliographic databases – including MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, Cumulative Index to Nursing and Allied Health Literature (CINAHL), NHS Economic Evaluation Database (NHS EED), EMBASE and The Cochrane Library databases – were searched from database inception to February 2011, with searches updated in March 2012. Bibliographies of systematic reviews and related papers were screened and experts contacted to identify any additional references. Review methods References were screened independently by two reviewers using a priori selection criteria. A descriptive map was created to summarise the characteristics of relevant studies. Further selection criteria developed in consultation with the project Advisory Group were used to prioritise a subset of studies relevant to NHS practice and policy for systematic review. A decision-analytic economic model was developed to investigate the cost-effectiveness of educational interventions for preventing catheter-BSI. Results Seventy-four studies were included in the descriptive map, of which 24 were prioritised for systematic review. Studies have predominantly been conducted in the USA, using single-cohort before-and-after study designs. Diverse types of educational intervention appear effective at reducing the incidence density of catheter-BSI (risk ratios statistically significantly < 1.0), but single lectures were not effective. The economic model showed that implementing an educational intervention in critical care units in England would be cost-effective and potentially cost-saving, with incremental cost-effectiveness ratios under worst-case sensitivity analyses of < £5000/quality-adjusted life-year. Limitations Low-quality primary studies cannot definitively prove that the planned interventions were responsible for observed changes in catheter-BSI incidence. Poor reporting gave unclear estimates of risk of bias. Some model parameters were sourced from other locations owing to a lack of UK data. Conclusions Our results suggest that it would be cost-effective and may be cost-saving for the NHS to implement educational interventions in critical care units. However, more robust primary studies are needed to exclude the possible influence of secular trends on observed reductions in catheter-BSI.
Resumo:
Genome-wide association studies followed by replication provide a powerful approach to map genetic risk factors for asthma. We sought to search for new variants associated with asthma and attempt to replicate the association with four loci reported previously (ORMDL3, PDE4D, DENND1B and IL1RL1). Genome-wide association analyses of individual single nucleotide polymorphisms (SNPs), rare copy number variants (CNVs) and overall CNV burden were carried out in 986 asthma cases and 1846 asthma-free controls from Australia. The most-associated locus in the SNP analysis was ORMDL3 (rs6503525, P = 4.8 x 10(-)(7)). Five other loci were associated with P < 10(-)(5), most notably the chemokine CXC motif ligand 14 (CXCL14) gene (rs31263, P = 7.8 x 10(-)(6)). We found no evidence for association with the specific risk variants reported recently for PDE4D, DENND1B and ILR1L1. However, a variant in IL1RL1 that is in low linkage disequilibrium with that reported previously was associated with asthma risk after accounting for all variants tested (rs10197862, gene wide P = 0.01). This association replicated convincingly in an independent cohort (P = 2.4 x 10(-)(4)). A 300-kb deletion on chromosome 17q21 was associated with asthma risk, but this did not reach experiment-wide significance. Asthma cases and controls had comparable CNV rates, length and number of genes affected by deletions or duplications. In conclusion, we confirm the association between asthma risk and variants in ORMDL3 and identify a novel risk variant in IL1RL1. Follow-up of the 17q21 deletion in larger cohorts is warranted.
Resumo:
Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.
Resumo:
Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.
Resumo:
Climate change will influence the living conditions of all life on Earth. For some species the change in the environmental conditions that has occurred so far has already increased the risk of extinction, and the extinction risk is predicted to increase for large numbers of species in the future. Some species may have time to adapt to the changing environmental conditions, but the rate and magnitude of the change are too great to allow many species to survive via evolutionary changes. Species responses to climate change have been documented for some decades. Some groups of species, like many insects, respond readily to changes in temperature conditions and have shifted their distributions northwards to new climatically suitable regions. Such range shifts have been well documented especially in temperate zones. In this context, butterflies have been studied more than any other group of species, partly for the reason that their past geographical ranges are well documented, which facilitates species-climate modelling and other analyses. The aim of the modelling studies is to examine to what extent shifts in species distributions can be explained by climatic and other factors. Models can also be used to predict the future distributions of species. In this thesis, I have studied the response to climate change of one species of butterfly within one geographically restricted area. The study species, the European map butterfly (Araschnia levana), has expanded rapidly northwards in Finland during the last two decades. I used statistical and dynamic modelling approaches in combination with field studies to analyse the effects of climate warming and landscape structure on the expansion. I studied possible role of molecular variation in phosphoglucose isomerase (PGI), a glycolytic enzyme affecting flight metabolism and thereby flight performance, in the observed expansion of the map butterfly at two separate expansion fronts in Finland. The expansion rate of the map butterfly was shown to be correlated with the frequency of warmer than average summers during the study period. The result is in line with the greater probability of occurrence of the second generation during warm summers and previous results on this species showing greater mobility of the second than first generation individuals. The results of a field study in this thesis indicated low mobility of the first generation butterflies. Climatic variables alone were not sufficient to explain the observed expansion in Finland. There are also problems in transferring the climate model to new regions from the ones from which data were available to construct the model. The climate model predicted a wider distribution in the south-western part of Finland than what has been observed. Dynamic modelling of the expansion in response to landscape structure suggested that habitat and landscape structure influence the rate of expansion. In southern Finland the landscape structure may have slowed down the expansion rate. The results on PGI suggested that allelic variation in this enzyme may influence flight performance and thereby the rate of expansion. Genetic differences of the populations at the two expansion fronts may explain at least partly the observed differences in the rate of expansion. Individuals with the genotype associated with high flight metabolic rate were most frequent in eastern Finland, where the rate of range expansion has been highest.
Resumo:
Autoimmune diseases are more common in dogs than in humans and are already threatening the future of some highly predisposed dog breeds. Susceptibility to autoimmune diseases is controlled by environmental and genetic factors, especially the major histocompatibility complex (MHC) gene region. Dogs show a similar physiology, disease presentation and clinical response as humans, making them an excellent disease model for autoimmune diseases common to both species. The genetic background of canine autoimmune disorders is largely unknown, but recent annotation of the dog genome and subsequent development of new genomic tools offer a unique opportunity to map novel autoimmune genes in various breeds. Many autoimmune disorders show breed-specific enrichment, supporting a strong genetic background. Furthermore, the presence of hundreds of breeds as genetic isolates facilitates gene mapping in complex autoimmune disorders. Identification of novel predisposing genes establishes breeds as models and may reveal novel candidate genes for the corresponding human disorders. Genetic studies will eventually shed light on common biological functions and interactions between genes and the environment. This study aimed to identify genetic risk factors in various autoimmune disorders, including systemic lupus erythematosus (SLE)-related diseases, comprising immune-mediated rheumatic disease (IMRD) and steroid-responsive meningitis arteritis (SMRA) as well as Addison s disease (AD) in Nova Scotia Duck Tolling Retrievers (NSDTRs) and chronic superficial keratitis (CSK) in German Shepherd dogs (GSDs). We used two different approaches to identify genetic risk factors. Firstly, a candidate gene approach was applied to test the potential association of MHC class II, also known as a dog leukocyte antigen (DLA) in canine species. Secondly, a genome-wide association study (GWAS) was performed to identify novel risk loci for SLE-related disease and AD in NSDTRs. We identified DLA risk haplotypes for an IMRD subphenotype of SLE-related disease, AD and CSK, but not in SMRA, and show that the MHC class II gene region is a major genetic risk factor in canine autoimmune diseases. An elevated risk was found for IMRD in dogs that carried the DLA-DRB1*00601/DQA1*005011/DQB1*02001 haplotype (OR = 2.0, 99% CI = 1.03-3.95, p = 0.01) and for ANA-positive IMRD dogs (OR = 2.3, 99% CI = 1.07-5.04, p-value 0.007). We also found that DLA-DRB1*01502/DQA*00601/DQB1*02301 haplotype was significantly associated with AD in NSDTRs (OR = 2.1, CI = 1.0-4.4, P = 0.044) and the DLA-DRB1*01501/DQA1*00601/DQB1*00301 haplotype with the CSK in GSDs (OR=2.67, CI=1.17-6.44, p= 0.02). In addition, we found that homozygosity for the risk haplotype increases the risk for each disease phenotype and that an overall homozygosity for the DLA region predisposes to CSK and AD. Our results have enabled the development of genetic tests to improve breeding practices by avoiding the production of puppies homozygous for risk haplotypes. We also performed the first successful GWAS for a complex disease in dogs. With less than 100 cases and 100 controls, we identified five risk loci for SLE-related disease and AD and found strong candidate genes involved in a novel T-cell activation pathway. We show that an inbred dog population has fewer risk factors, but each of them has a stronger genetic risk. Ongoing studies aim to identify the causative mutations and bring new knowledge to help diagnostics, treatment and understanding of the aetiology of SLE-related diseases.
Resumo:
Introducing a "Cheaper, Faster, Better" product in today's highly competitive market is a challenging target. Therefore, for organizations to improve their performance in this area, they need to adopt methods such as process modelling, risk mitigation and lean principles. Recently, several industries and researchers focused efforts on transferring the value orientation concept to other phases of the Product Life Cycle (PLC) such as Product Development (PD), after its evident success in manufacturing. In PD, value maximization, which is the main objective of lean theory, has been of particular interest as an improvement concept that can enhance process flow logistics and support decision-making. This paper presents an ongoing study of the current understanding of value thinking in PD (VPD) with a focus on value dimensions and implementation benefits. The purpose of this study is to consider the current state of knowledge regarding value thinking in PD, and to propose a definition of value and a framework for analyzing value delivery. The framework-named the Value Cycle Map (VCM)- intends to facilitate understanding of value and its delivery mechanism in the context of the PLC. We suggest the VCM could be used as a foundation for future research in value modelling and measurement in PD.
Resumo:
For at least two millennia and probably much longer, the traditional vehicle for communicating geographical information to end-users has been the map. With the advent of computers, the means of both producing and consuming maps have radically been transformed, while the inherent nature of the information product has also expanded and diversified rapidly. This has given rise in recent years to the new concept of geovisualisation (GVIS), which draws on the skills of the traditional cartographer, but extends them into three spatial dimensions and may also add temporality, photorealistic representations and/or interactivity. Demand for GVIS technologies and their applications has increased significantly in recent years, driven by the need to study complex geographical events and in particular their associated consequences and to communicate the results of these studies to a diversity of audiences and stakeholder groups. GVIS has data integration, multi-dimensional spatial display advanced modelling techniques, dynamic design and development environments and field-specific application needs. To meet with these needs, GVIS tools should be both powerful and inherently usable, in order to facilitate their role in helping interpret and communicate geographic problems. However no framework currently exists for ensuring this usability. The research presented here seeks to fill this gap, by addressing the challenges of incorporating user requirements in GVIS tool design. It starts from the premise that usability in GVIS should be incorporated and implemented throughout the whole design and development process. To facilitate this, Subject Technology Matching (STM) is proposed as a new approach to assessing and interpreting user requirements. Based on STM, a new design framework called Usability Enhanced Coordination Design (UECD) is ten presented with the purpose of leveraging overall usability of the design outputs. UECD places GVIS experts in a new key role in the design process, to form a more coordinated and integrated workflow and a more focused and interactive usability testing. To prove the concept, these theoretical elements of the framework have been implemented in two test projects: one is the creation of a coastal inundation simulation for Whitegate, Cork, Ireland; the other is a flooding mapping tool for Zhushan Town, Jiangsu, China. The two case studies successfully demonstrated the potential merits of the UECD approach when GVIS techniques are applied to geographic problem solving and decision making. The thesis delivers a comprehensive understanding of the development and challenges of GVIS technology, its usability concerns, usability and associated UCD; it explores the possibility of putting UCD framework in GVIS design; it constructs a new theoretical design framework called UECD which aims to make the whole design process usability driven; it develops the key concept of STM into a template set to improve the performance of a GVIS design. These key conceptual and procedural foundations can be built on future research, aimed at further refining and developing UECD as a useful design methodology for GVIS scholars and practitioners.
Resumo:
Over a period of several centuries, the academic study of risk has evolved as a distinct body of thought, which continues to influence conceptual developments in fields such as economics, management, politics and sociology. However, few scholarly works have given a chronological account of cultural and intellectual trends relating to the understanding and analysis of risks. Risk: A Study of its Origins, History and Politics aims to fill this gap by providing a detailed study of key turning points in the evolution of society's understanding of risk. Using a wide range of primary and secondary materials, Matthias Beck and Beth Kewell map the political origins and moral reach of some of the most influential ideas associated with risk and uncertainty at specific periods of time. The historical focus of the book makes it an excellent introduction for readers who wish to go beyond specific risk management techniques and their theoretical underpinnings, to gain an understanding of the history and politics of risk.
Resumo:
Soil gas emissions of methane and carbon dioxide on brownfield sites are usually attributed to anthropogenic activities; however geogenic sources of soil gas are often not considered during site investigation and risk management strategies. This paper presents a field study at a redeveloped brownfield site on a flood plain to identify accumulations of methane biogas trapped in underlying sediments. The investigation is based on a multidisciplinary approach using direct multi-level sampling measurements and Earth resistivity tomography . Resistivity imaging was applied to evaluate the feasibility of identifying the size and spatial continuity of soil gas accumulations in anthropogenic and naturally occurring deposits. As a result, biogas accumulations are described within both anthropogenic deposits and pristine organic sediments. This result is important to identify the correct approaches to identify and manage risks associated with soil gas emissions on brownfield and pristine sites. The organic-rich sediments in Quaternary fluvial environments of São Paulo Basin in particular the Tietê River, biogas reservoirs can be generated and trapped beneath geogenic and anthropogenic layers, potentially requiring the management of brownfield developments across this region.