988 resultados para Richardson, Emily C.
Resumo:
Brain trauma can disrupt synaptic connections, and this in turn can prompt axons to sprout and form new connections. If these new axonal connections are aberrant, hyperexcitability can result. It has been shown that ablating tropomyosin-related kinase B (TrkB), a receptor for brain-derived neurotrophic factor (BDNF), can reduce axonal sprouting after hippocampal injury. However, it is unknown whether inhibiting BDNF-mediated axonal sprouting will reduce hyperexcitability. Given this, our purpose here was to determine whether pharmacologically blocking BDNF inhibits hyperexcitability after injury-induced axonal sprouting in the hippocampus. To induce injury, we made Schaffer collateral lesions in organotypic hippocampal slice cultures. As reported by others, we observed a 50% reduction in axonal sprouting in cultures treated with a BDNF blocker (TrkB-Fc) 14 days after injury. Furthermore, lesioned cultures treated with TrkB-Fc were less hyperexcitable than lesioned untreated cultures. Using electrophysiology, we observed a two-fold decrease in the number of CA3 neurons that showed bursting responses after lesion with TrkB-Fc treatment, whereas we found no change in intrinsic neuronal firing properties. Finally, evoked field excitatory postsynaptic potential recordings indicated an increase in network activity within area CA3 after lesion, which was prevented with chronic TrkB-Fc treatment. Taken together, our results demonstrate that blocking BDNF attenuates injury-induced hyperexcitability of hippocampal CA3 neurons. Axonal sprouting has been found in patients with post-traumatic epilepsy. Therefore, our data suggest that blocking the BDNF-TrkB signaling cascade shortly after injury may be a potential therapeutic target for the treatment of post-traumatic epilepsy.
Resumo:
In this paper, we simulate numerically the catastrophic disruption of a large asteroid as a result of a collision with a smaller projectile and the subsequent reaccumulation of fragments as a result of their mutual gravitational attractions. We then investigate the original location within the parent body of the small pieces that eventually reaccumulate to form the largest offspring of the disruption as a function of the internal structure of the parent body. We consider four cases that may represent the internal structure of such a body (whose diameter is fixed at 250 km) in various early stages of the Solar System evolution: fully molten, half molten (i.e., a 26 km-deep outer layer of melt containing half of the mass), solid except a thin molten layer (8 km thick) centered at 10 km depth, and fully solid. The solid material has properties of basalt. We then focus on the three largest offspring that have enough reaccumulated pieces to consider. Our results indicate that the particles that eventually reaccumulate to form the largest reaccumulated bodies retain a memory of their original locations in the parent body. Most particles in each reaccumulated body are clustered from the same original region, even if their reaccumulations take place far away. The extent of the original region varies considerably depending on the internal structure of the parent. It seems to shrink with the solidity of the body. The fraction of particles coming from a given depth is computed for the four cases, which can give constraints on the internal structure of parent bodies of some meteorites. As one example, we consider the ureilites, which in some petrogenetic models are inferred to have formed at particular depths within their parent body. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Ocean acidification leads to changes in marine carbonate chemistry that are predicted to cause a decline in future coral reef calcification. Several laboratory and mesocosm experiments have described calcification responses of species and communities to increasing CO2. The few in situ studies on natural coral reefs that have been carried out to date have shown a direct relationship between aragonite saturation state (Omega arag) and net community calcification (Gnet). However, these studies have been performed over a limited range of Omega arag values, where extrapolation outside the observational range is required to predict future changes in coral reef calcification. We measured extreme diurnal variability in carbonate chemistry within a reef flat in the southern Great Barrier Reef, Australia. Omega arag varied between 1.1 and 6.5, thus exceeding the magnitude of change expected this century in open ocean subtropical/tropical waters. The observed variability comes about through biological activity on the reef, where changes to the carbonate chemistry are enhanced at low tide when reef flat waters are isolated from open ocean water. We define a relationship between net community calcification and Omega arag, using our in situ measurements. We find net community calcification to be linearly related to Omega arag, while temperature and nutrients had no significant effect on Gnet. Using our relationship between Gnet and Omega arag, we predict that net community calcification will decline by 55% of its preindustrial value by the end of the century. It is not known at this stage whether exposure to large variability in carbonate chemistry will make reef flat organisms more or less vulnerable to the non-calcifying physiological effects of increasing ocean CO2 and future laboratory studies will need to incorporate this natural variability to address this question.
Resumo:
There are few in situ studies showing how net community calcification (Gnet) of coral reefs is related to carbonate chemistry, and the studies to date have demonstrated different predicted rates of change. In this study, we measured net community production (Pnet), Gnet, and carbonate chemistry of a reef flat at One Tree Island, Great Barrier Reef. Diurnal pCO2 variability of 289-724 µatm was driven primarily by photosynthesis and respiration. The reef flat was found to be net autotrophic, with daily production of ? 35 mmol C/m**2/d and net calcification of ? 33 mmol C/m**2/d . Gnet was strongly related to Pnet, which drove a hysteresis pattern in the relationship between Gnet and aragonite saturation state (Omega ar). Although Pnet was the main driver of Gnet, Omega ar was still an important factor, where 95% of the variance in Gnet could be described by Pnet and Omega ar. Based on the observed in situ relationship, Gnet would be expected to reach zero when Omega ar is 2.5. It is unknown what proportion of a decline in Gnet would be through reduced calcification and what would occur through increased dissolution, but the results here support predictions that overall calcium carbonate production will decline in coral reefs as a result of ocean acidification.
Resumo:
In the last decade, thanks to the development of sophisticated numerical codes, major breakthroughs have been achieved in our understanding of the formation of asteroid families by catastrophic disruption of large parent bodies. In this review, we describe numerical simulations of asteroid collisions that reproduced the main properties of families, accounting for both the fragmentation of an asteroid at the time of impact and the subsequent gravitational interactions of the generated fragments. The simulations demonstrate that the catastrophic disruption of bodies larger than a few hundred meters in diameter leads to the formation of large aggregates due to gravitational reaccumulation of smaller fragments, which helps explain the presence of large members within asteroid families. Thus, for the first time, numerical simulations successfully reproduced the sizes and ejection velocities of members of representative families. Moreover, the simulations provide constraints on the family dynamical histories and on the possible internal structure of family members and their parent bodies.
Resumo:
HIV-1 reverse transcriptase (RT) catalyzes the synthesis of DNA from DNA or RNA templates. During this process, it must transfer its primer from one template to another RNA or DNA template. Binary complexes made of RT and a primer/template bind an additional single-stranded RNA molecule of the same nucleotide sequence as that of the DNA or RNA template. The additional RNA strand leads to a 10-fold decrease of the off-rate constant, koff, of RT from a primer/DNA template. In a binary complex of RT and a primer/template, the primer can be cross-linked to both the p66 and p51 subunits. Depending on the location of the photoreactive group in the primer, the distribution of the cross-linked primers between subunits is dependent on the nature of the template and of the additional single-stranded molecule. Greater cross-linking of the primer to p51 occurs with DNA templates, whereas cross-linking to p66 predominates with RNA templates. Excess single-stranded DNA shifts the distribution of cross-linking from p66 to p51 with RNA templates, and excess single-stranded RNA shifts the cross-linking from p51 to p66 with DNA templates. RT thus uses two primer/template binding modes depending on the nature of the template.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Bacteriophage T7 DNA primase recognizes 5'-GTC-3' in single-stranded DNA. The primase contains a single Cys4 zinc-binding motif that is essential for recognition. Biochemical and mutagenic analyses suggest that the Cys4 motif contacts cytosine of 5'-GTC-3' and may also contribute to thymine recognition. Residues His33 and Asp31 are critical for these interactions. Biochemical analysis also reveals that T7 primase selectively binds CTP in the absence of DNA. We propose that bound CTP selects the remaining base G, of 5'-GTC-3', by base pairing. Our deduced mechanism for recognition of ssDNA by Cys4 motifs bears little resemblance to the recognition of trinucleotides of double-stranded DNA by Cys2His2 zinc fingers.