1000 resultados para RhBMP-2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies have reported certain bone morphogenic proteins (BMPs) to have positive effects on bone generation. Although some investigators have studied the effects of human recombinant BMP (rhBMP-2) in sinus augmentation in sheep, none of these studies looked at the placement of implants at the time of sinus augmentation. Furthermore, no literature could be found to report on the impact that different implant systems, as well as the positioning of the implants had on bone formation if rhBMP-2 was utilized in sinus-lift procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The aim of this study was to evaluate the efficacy of a combination graft, using recombinant human bone morphogenetic protein-2 (rhBMP-2) and culture-expanded cells derived from bone marrow, for bone regeneration in a nonhuman primate mandible. METHODS: Five Japanese monkeys were used. Three milliliters of bone marrow was obtained from the tibia and plated into culture flasks. Adherent cells were cultured until near confluence; then, the proliferated cells were transferred to a three-dimensional culture system using collagen beads as the cell carrier. The medium was supplemented with ascorbic acid, beta-glycerophosphate, and dexamethasone to promote osteoblastic differentiation. After further proliferation on beads, the cells were mixed with a collagen sponge that was impregnated with rhBMP-2 and grafted into surgically created segmental bone defects of the mandibles. Three animals received this treatment, and either culture-expanded cells alone or collagen beads without cells were implanted into the remaining two monkeys as controls. The animals were killed 24 weeks after surgery, and the results were assessed by radiographic and histologic evaluation. RESULTS: The combination graft of culture-expanded bone marrow cells with rhBMP-2 in a collagen sponge regenerated the mandibular bone completely. By contrast, the graft of culture-expanded cells alone resulted in only a small amount of bone formation, and the implantation of collagen beads alone led to no bone formation. CONCLUSION: The combination graft of rhBMP-2 and culture-expanded cells, which requires only a small amount of bone marrow, is a reliable method for the reconstruction of segmental bone defects of the mandible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Bone morphogenetic protein (BMP) is a potent differentiating agent for cells of the osteoblastic lineage. It has been used in the oral cavity under a variety of indications and with different carriers. However, the optimal carrier for each indication is not known. This study examined a synthetic bioabsorbable carrier for BMP used in osseous defects around dental implants in the canine mandible. METHODS: Twelve canines had their mandibular four premolars and first molar teeth extracted bilaterally. After 5 months, four implants were placed with standardized circumferential defects around the coronal 4 mm of each implant. One-half of the defects received a polylactide/glycolide (PLGA) polymer carrier with or without recombinant human BMP-2 (rhBMP-2), and the other half received a collagen carrier with or without rhBMP-2. Additionally, one-half of the implants were covered with a non-resorbable (expanded polytetrafluoroethylene [ePTFE]) membrane to exclude soft tissues. Animals were sacrificed either 4 or 12 weeks later. Histomorphometric analysis included the percentage of new bone contact with the implant, the area of new bone, and the percentage of defect fill. This article describes results with the PLGA carrier. RESULTS: All implants demonstrated clinical and radiographic success with the amount of new bone formed dependent on the time and presence/absence of rhBMP-2 and presence/absence of a membrane. The percentage of bone-to-implant contact was greater with rhBMP-2, and after 12 weeks of healing, there was approximately one-third of the implant contacting bone in the defect site. After 4 weeks, the presence of a membrane appeared to slow new bone area formation. The percentage of fill in membrane-treated sites with rhBMP-2 rose from 24% fill to 42% after 4 and 12 weeks, respectively. Without rhBMP-2, the percentage of fill was 14% rising to 36% fill, respectively. CONCLUSIONS: After 4 weeks, the rhBMP-2-treated sites had a significantly higher percentage of contact, more new bone area, and higher percentage of defect fill than the sites without rhBMP-2. After 12 weeks, there was no significant difference in sites with or without rhBMP-2 regarding percentage of contact, new bone area, or percentage of defect fill. In regard to these three outcomes, comparing the results with this carrier to the results reported earlier with a collagen carrier in this study, only the area of new bone was significantly different with the collagen carrier resulting in greater bone than the PLGA carrier. Thus, the PLGA carrier for rhBMP-2 significantly stimulated bone formation around dental implants in this model after 1 month but not after 3 months of healing. The use of this growth factor and carrier combination appears to stimulate early bone healing events around the implants but not quite to the same degree as a collagen carrier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES To test a non-glycosylated recombinant human bone morphogenetic protein-2 (ngly-rhBMP-2)/fibrin composite, which has been shown experimentally to enhance healing of bone defects in rodents, in a clinical case series of dogs and cats undergoing treatment for fracture non-unions and arthrodesis. METHODS A ngly-rhBMP-2/fibrin composite was applied in 41 sites in 38 dogs and cats for which a cancellous bone autograft was indicated, replacing the graft. RESULTS Bridging of the bone defect with functional bone healing was achieved in 90 per cent of the arthrodesis and fracture nonunions treated in this manner. CLINICAL SIGNIFICANCE This prospective clinical study demonstrates the beneficial effects of ngly-rhBMP-2 in a specially designed fibrin matrix on the treatment of bone defects, and validates the use of this composite as an alternative to bone autografts in dogs and cats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introducción. Los factores de crecimiento polipéptidos son una clase de mediadores biológicos naturales que regulan los eventos celulares clave en la reparación tisular, incluyendo la proliferación celular, quimiotaxis, diferenciación y síntesis de la matriz mediante la union a receptores de superficie específicos. El hueso es una fuente rica en factores de crecimiento con acciones importantes en la regulación de la formación y reabsorción ósea, entre los que se encuentran, las proteinnas morfogenéticas óseas (BMPs), el factor de crecimiento derivado de plaquets (PDGF), entre otros. El objetivo de esta investigación fue evaluar el potencial de regeneración ósea (osteoide) y osteoinducción (factores de mineralización) del rhPDGF-BB y rhBMP-2 en defectos de tamaño crítico en el cráneo de ratas Sprague-Dawley a las 4 semanas de cicatrización Materiales y Métodos. El diseño de esta investigación fue comparativo, abierto, experimental y longitudinal. La mustra consistió en 16 ratas Sprague-Dawley, las cuales se dividieron en grupos de 4, conformando así un grupo Control, un grupo Experimental 1 al cual se le colocó esponja de colágeno + 30μl a una concentración de 100 μg/ml de rhPDGFBB; un grupo Experimental 2 al que se le colocó esponja de colágeno + 30μl a una concentración de 100 μg/ml de rhBMP-2; y un grupo Experimental 3, cual cual consistió en la colocación de esponja de colágeno + 30μl a una concentración de 100 μg/ml de rhPDGF-BB + 30μl a una concentración de 100 μg/ml de rhBMP-2. Se dejó un período de cicatrización de 4 semanas y posteriormente se sacrificaron los especímenes. Resultados Resultados. Tanto rhPDGF-BB como rhBMP-2 incrementaron la producción de osteoprotegerina y de osteopontina (p<0.05). La combinación de ambos factores de crecimiento también incremento la producción de ambos factores de mineralización (p<0.01). Resultados semejantes fueron encontrados en la producción de osteoide por ambos factores. Conclusión. La combinación de ambos factores de crecimiento aumenta la regeneración ósea demostrado por el incremento en la producción de osteoide y de los factores de mineralización osteopontina y osteoprotegerina.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background Large segmental defects in bone do not heal well and present clinical challenges. This study investigated modulation of the mechanical environment as a means of improving bone healing in the presence of bone morphogenetic protein (BMP)-2. Although the influence of mechanical forces on the healing of fractures is well established, no previous studies, to our knowledge, have described their influence on the healing of large segmental defects. We hypothesized that bone-healing would be improved by initial, low-stiffness fixation of the defect, followed by high-stiffness fixation during the healing process. We call this reverse dynamization. Methods A rat model of a critical-sized femoral defect was used. External fixators were constructed to provide different degrees of stiffness and, importantly, the ability to change stiffness during the healing process in vivo. Healing of the critical-sized defects was initiated by the implantation of 11 mg of recombinant human BMP (rhBMP)-2 on a collagen sponge. Groups of rats receiving BMP-2 were allowed to heal with low, medium, and high-stiffness fixators, as well as under conditions of reverse dynamization, in which the stiffness was changed from low to high at two weeks. Healing was assessed at eight weeks with use of radiographs, histological analysis, microcomputed tomography, dual x-ray absorptiometry, and mechanical testing. Results Under constant stiffness, the low-stiffness fixator produced the best healing after eight weeks. However, reverse dynamization provided considerable improvement, resulting in a marked acceleration of the healing process by all of the criteria of this study. The histological data suggest that this was the result of intramembranous, rather than endochondral, ossification. Conclusions Reverse dynamization accelerated healing in the presence of BMP-2 in the rat femur and is worthy of further investigation as a means of improving the healing of large segmental bone defects. Clinical Relevance These data provide the basis of a novel, simple, and inexpensive way to improve the healing of critical-sized defects in long bones. Reverse dynamization may also be applicable to other circumstances in which bonehealing is problematic.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study reports that treatment of osseous defects with different growth factors initiates distinct rates of repair. We developed a new method for monitoring the progression of repair, based upon measuring the in vivo mechanical properties of healing bone. Two different members of the bone morphogenetic protein (BMP) family were chosen to initiate defect healing: BMP-2 to induce osteogenesis, and growth-and-differentiation factor (GDF)-5 to induce chondrogenesis. To evaluate bone healing, BMPs were implanted into stabilised 5 mm bone defects in rat femurs and compared to controls. During the first two weeks, in vivo biomechanical measurements showed similar values regardless of the treatment used. However, 2 weeks after surgery, the rhBMP-2 group had a substantial increase in stiffness, which was supported by the imaging modalities. Although the rhGDF-5 group showed comparable mechanical properties at 6 weeks as the rhBMP-2 group, the temporal development of regenerating tissues appeared different with rhGDF-5, resulting in a smaller callus and delayed tissue mineralisation. Moreover, histology showed the presence of cartilage in the rhGDF-5 group whereas the rhBMP-2 group had no cartilaginous tissue. Therefore, this study shows that rhBMP-2 and rhGDF-5 treated defects, under the same conditions, use distinct rates of bone healing as shown by the tissue mechanical properties. Furthermore, results showed that in vivo biomechanical method is capable of detecting differences in healing rate by means of change in callus stiffness due to tissue mineralisation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective To determine whether locally applied tobramycin influences the ability of recombinant human bone morphogenetic protein 2 (rhBMP-2) to heal a segmental defect in the rat femur. Methods The influence of tobramycin on the osteogenic differentiation of mesenchymal stem cells was first evaluated in vitro. For the subsequent, in vivo experiments, a 5-mm segmental defect was created in the right femur of each of 25 Sprague-Dawley rats and stabilized with an external fixator and four Kirschner wires. Rats were divided in four groups: empty control, tobramycin (11 mg)/absorbable collagen sponge, rhBMP-2 (11 μg)/absorbable collagen sponge, and rhBMP-2/absorbable collagen sponge with tobramycin. Bone healing was monitored by radiography at 3 and 8 weeks. Animals were euthanized at 8 weeks and the properties of the defect were compared with the intact contralateral femur. Bone formation in the defect region was assessed by dual-energy x-ray absorptiometry, microcomputed tomography, histology, and mechanical testing. Results Tobramycin exerted a dose-dependent inhibition of alkaline phosphatase induction and calcium deposition by mesenchymal stem cells cultured under osteogenic conditions. The inhibition was reversed in the presence of 500 ng/mL of rhBMP-2. Segmental defects in the rat femora failed to heal in the absence of rhBMP-2. Tobramycin exerted no inhibitory effects on the ability of rhBMP-2 to heal these defects and increased the bone area of the defects treated with rhBMP-2. Data obtained from all other parameters of healing, including dual-energy x-ray absorptiometry, microcomputed tomography, histology, and mechanical testing, were unaffected by tobramycin. Conclusions Although our in vitro results suggested that tobramycin inhibits the osteogenic differentiation of mesenchymal stem cells, this could be overcome by rhBMP-2. Tobramycin did not impair the ability of rhBMP-2 to heal critical-sized femoral defects in rats. Indeed, bone area was increased by nearly 20% in the rhBMP-2 group treated with tobramycin. This study shows that locally applied tobramycin can be used in conjunction with rhBMP-2 to enhance bone formation at fracture sites.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Novel nanostructures such as vertically aligned carbon nanotube (CNT) arrays have received increasing interest as drug delivery carriers. In the present study, two CNT arrays with extreme surface wettabilities are fabricated and their effects on the release of recombinant human bone morphogenetic protein-2 (rhBMP-2) are investigated. It is found that the superhydrophilic arrays retained a larger amount of rhBMP-2 than the superhydrophobic ones. Further use of a poloxamer diffusion layer delayed the initial burst and resulted in a greater total amount of rhBMP-2 released from both surfaces. In addition, rhBMP-2 bound to the superhydrophilic CNT arrays remained bioactive while they denatured on the superhydrophobic surfaces. These results are related to the combined effects of rhBMP-2 molecules interacting with poloxamer and the surface, which could be essential in the development of advanced carriers with tailored surface functionalities.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Highly efficient loading of bone morphogenetic protein-2 (BMP-2) onto carriers with desirable performance is still a major challenge in the field of bone regeneration. Till now, the nanoscaled surface-induced changes of the structure and bioactivity of BMP-2 remains poorly understood. Here, the effect of nanoscaled surface on the adsorption and bioactivity of BMP-2 was investigated with a series of hydroxyapatite surfaces (HAPs): HAP crystal-coated surface (HAP), HAP crystal-coated polished surface (HAP-Pol), and sintered HAP crystal-coated surface (HAP-Sin). The adsorption dynamics of recombinant human BMP-2 (rhBMP-2) and the accessibility of the binding epitopes of adsorbed rhBMP-2 for BMP receptors (BMPRs) were examined by a quartz crystal microbalance with dissipation. Moreover, the bioactivity of adsorbed rhBMP-2 and the BMP-induced Smad signaling were investigated with C2C12 model cells. A noticeably high mass-uptake of rhBMP-2 and enhanced recognition of BMPR-IA to adsorbed rhBMP-2 were found on the HAP-Pol surface. For the rhBMP-2-adsorbed HAPs, both ALP activity and Smad signaling increased in the order of HAP-Sin < HAP < HAP-Pol. Furthermore, hybrid molecular dynamics and steered molecular dynamics simulations validated that BMP-2 tightly anchored on the HAP-Pol surface with a relative loosened conformation, but the HAP-Sin surface induced a compact conformation of BMP-2. In conclusion, the nanostructured HAPs can modulate the way of adsorption of rhBMP-2, and thus the recognition of BMPR-IA and the bioactivity of rhBMP-2. These findings can provide insightful suggestions for the future design and fabrication of rhBMP-2-based scaffolds/implants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The release of growth factors from tissue engineering scaffolds provides signals that influence the migration, differentiation, and proliferation of cells. The incorporation of a drug delivery platform that is capable of tunable release will give tissue engineers greater versatility in the direction of tissue regeneration. We have prepared a novel composite of two biomaterials with proven track records - apatite and poly(lactic-co-glycolic acid) (PLGA) – as a drug delivery platform with promising controlled release properties. These composites have been tested in the delivery of a model protein, bovine serum albumin (BSA), as well as therapeutic proteins, recombinant human bone morphogenetic protein-2 (rhBMP-2) and rhBMP-6. The controlled release strategy is based on the use of a polymer with acidic degradation products to control the dissolution of the basic apatitic component, resulting in protein release. Therefore, any parameter that affects either polymer degradation or apatite dissolution can be used to control protein release. We have modified the protein release profile systematically by varying the polymer molecular weight, polymer hydrophobicity, apatite loading, apatite particle size, and other material and processing parameters. Biologically active rhBMP-2 was released from these composite microparticles over 100 days, in contrast to conventional collagen sponge carriers, which were depleted in approximately 2 weeks. The released rhBMP-2 was able to induce elevated alkaline phosphatase and osteocalcin expression in pluripotent murine embryonic fibroblasts. To augment tissue engineering scaffolds with tunable and sustained protein release capabilities, these composite microparticles can be dispersed in the scaffolds in different combinations to obtain a superposition of the release profiles. We have loaded rhBMP-2 into composite microparticles with a fast release profile, and rhBMP-6 into slow-releasing composite microparticles. An equi-mixture of these two sets of composite particles was then injected into a collagen sponge, allowing for dual release of the proteins from the collagenous scaffold. The ability of these BMP-loaded scaffolds to induce osteoblastic differentiation in vitro and ectopic bone formation in a rat model is being investigated. We anticipate that these apatite-polymer composite microparticles can be extended to the delivery of other signalling molecules, and can be incorporated into other types of tissue engineering scaffolds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Application of recombinant human bone morphogenetic protein 2 (rhBMP-2) to implant surfaces has been of great interest due to its osteoinductive potential. However, the optimal coating methodology has not been clarified. The objective of the study was to determine whether the application of rhBMP-2 onto plasma-sprayed hydroxyapatite implant surfaces by immersion in protein solution before implant installation would result in significantly improved bone apposition. Using a sheep iliac model, titanium (Ti) and plasma-sprayed calcium-phosphate (PSCaP)-coated implants uncoated and coated with rhBMP-2 were assessed for their osteogenic effects in the peri-implant area over time in terms of osseointegration and de novo bone formation. After 3 and 6 weeks postoperatively, the samples were retrieved and were subjected to bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) evaluation. When rhBMP-2 was applied to the PSCaP surface, significant increases in BIC and BAFO were observed at 3 weeks in vivo, whereas when adsorbed directly onto the titanium implant surface, rhBMP-2 did not as effectively improve the bone response (although significantly higher than control Ti). The outcomes of the present study suggested that the combination of plasma-sprayed calcium-phosphate surface and rhBMP-2 coating significantly enhanced osseointegration, which validated the postulated hypothesis. © 2013 Wiley Periodicals, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: The conventional methods of maxillary alveolar reconstruction in patient with cleft are the periosteoplasty and autologous bone grafting. As an important alternative of bone substitution, there is the recombinant human bone morphogenetic protein-2 (rhBMP-2). This study compares the rhBMP-2 with periosteoplasty and autologous bone grafting. Methods: Patients with cleft and alveolar defect were divided into 3 groups of 6 patients who underwent to autologous iliac crest bone grafting, resorbable collagen sponge with rhBMP2, and periosteoplasty, respectively. The analysis was performed through computed tomographic scan preoperatively and at months 3, 6, and 12 postoperatively. The variables analyzed were the alveolar defect volume, formed bone volume, bone formation rate, maxillary height repair rate, and the formed bone density mean. Results: The formed bone volume was similar comparing the bone graft and BMP groups at 1-year postoperative analysis (P = 0.58). Both of them had the formed bone volume significantly larger than the periosteoplasty group at 3 and 6 months postoperatively. In this last group, the 1-year follow-up was canceled because the bone formation was insufficient. The bone formation rate, the maxillary height repair rate, and the mean of density of the formed bone were similar in the bone graft and BMP groups at 1-year follow-up with P values of 0.93, 0.90, and 0.81, respectively. Conclusions: The amount of formed bone in the periosteoplasty group was insufficient. There was no difference among the bone graft and rhBMP-2 therapy considering the parameters analyzed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Low-level laser irradiation (LLLI) and recombinant human bone morphogenetic protein type 2 (rhBMP-2) have been used to stimulate bone formation. LLLI stimulates proliferation of osteoblast precursor cells and cell differentiation and rhBMP-2 recruits osteoprogenitor cells to the bone healing area. This in vivo study evaluated the effects of LLLI and rhBMP-2 on the bone healing process in rats. Critical bone defects were created in the parietal bone in 42 animals, and the animals were divided into six treatment groups: (1) laser, (2) 7 mu g of rhBMP-2, (3) laser and 7 mu g of rhBMP-2, (4) 7 mu g of rhBMP-2/monoolein gel, (5) laser and 7 mu g rhBMP-2/monoolein gel, and (6) critical bone defect controls. A gallium-aluminum-arsenide diode laser was used (wavelength 780 nm, output power 60 mW, beam area 0.04 cm(2), irradiation time 80 s, energy density 120 J/cm(2), irradiance 1.5 W/cm(2)). After 15 days, the calvarial tissues were removed for histomorphometric analysis. Group 3 defects showed higher amounts of newly formed bone (37.89%) than the defects of all the other groups (P < 0.05). The amounts of new bone in defects of groups 1 and 4 were not significantly different from each other (24.00% and 24.75%, respectively), but were significantly different from the amounts in the other groups (P < 0.05). The amounts of new bone in the defects of groups 2 and 5 were not significantly different from each other (31.42% and 31.96%, respectively), but were significantly different from the amounts in the other groups (P < 0.05). Group 6 defects had 14.10% new bone formation, and this was significantly different from the amounts in the other groups (P < 0.05). It can be concluded that LLLI administered during surgery effectively accelerated healing of critical bone defects filled with pure rhBMP-2, achieving a better result than LLLI alone or the use of rhBMP-2 alone.