954 resultados para Ressonancia magnetica nuclear
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
The use of multimodal neuroimaging techniques has been helpful in the investigation of epileptogenic zone in patients with refractory epilepsies. This work aims to describe an ictal event during EEG-fMRI performed simultaneously in a 39-year-old man with refractory epilepsy. The EEG data were recorded at a sampling rate of 5 kHz, using a BrainAmp (BrainProducts, München, Germany) amplifier, with 64 MR (magnetic resonance) compatible Ag/AgCl electrodes. MR images were acquired using a 3T scanner in 3 sequences of 6 minutes of echo-planar images (EPIs), with TR = 2s, being the last sequence stopped after the ictal event. The EEG was corrected for gradient and pulse artifacts using the Brain Vision Analyzer2 software (BrainProducts), and the functional images were realigned, slice-timing corrected, normalized and smoothed. The start of the ictal changes was used for the evaluation of the BOLD response in MR images, using a t-test with a minimum cluster of 5 voxels, p <0.005 (T>2.5). The patient had a partial complex seizure, as noted by neurologist. The fMRI data showed positive BOLD responses (activation) in dysplastic areas, but showed the most significant activation outside the lesion, in areas compatible with secondary spread of the epileptic focus, probably caused by motor reaction also observed during the seizure. As a conclusion, we note that the technique of EEG-fMRI can detect the epileptogenic zone in patients with refractory epilepsy, but areas of dissemination of primary epileptogenic focus may show significant activation, introducing additional difficulties to the interpretation of the results
Resumo:
Systemic acquired resistance (SAR) is a broad-spectrum resistance in plants that involves the upregulation of a battery of pathogenesis-related (PR) genes. NPR1 is a key regulator in the signal transduction pathway that leads to SAR. Mutations in NPR1 result in a failure to induce PR genes in systemic tissues and a heightened susceptibility to pathogen infection, whereas overexpression of the NPR1 protein leads to increased induction of the PR genes and enhanced disease resistance. We analyzed the subcellular localization of NPR1 to gain insight into the mechanism by which this protein regulates SAR. An NPR1–green fluorescent protein fusion protein, which functions the same as the endogenous NPR1 protein, was shown to accumulate in the nucleus in response to activators of SAR. To control the nuclear transport of NPR1, we made a fusion of NPR1 with the glucocorticoid receptor hormone binding domain. Using this steroid-inducible system, we clearly demonstrate that nuclear localization of NPR1 is essential for its activity in inducing PR genes.