974 resultados para Respiratory Mucosa
Resumo:
Background: High-flow nasal cannulae (HFNC) create positive oropharyngeal airway pressure but it is unclear how their use affects lung volume. Electrical impedance tomography (EIT) allows assessment of changes in lung volume by measuring changes in lung impedance. Primary objectives were to investigate the effects of HFNC on airway pressure (Paw) and end-expiratory lung volume (EELV), and to identify any correlation between the two. Secondary objectives were to investigate the effects of HFNC on respiratory rate (RR), dyspnoea, tidal volume and oxygenation; and the interaction between body mass index (BMI) and EELV. Methods: Twenty patients prescribed HFNC post-cardiac surgery were investigated. Impedance measures, Paw, PaO2/FiO2 ratio, RR and modified Borg scores were recorded first on low flow oxygen (nasal cannula or Hudson face mask) and then on HFNC. Results: A strong and significant correlation existed between Paw and end-expiratory lung impedance (EELI) (r=0.7, p<0.001). Compared with low flow oxygen, HFNC significantly increased EELI by 25.6% (95% CI 24.3, 26.9) and Paw by 3.0 cmH2O (95% CI 2.4, 3.7). RR reduced by 3.4 breaths per minute (95% CI 1.7, 5.2) with HFNC use, tidal impedance variation increased by 10.5% (95% CI 6.1, 18.3) and PaO2/FiO2 ratio improved by 30.6 mmHg (95% CI 17.9, 43.3). HFNC improved subjective dyspnoea scoring (p=0.023). Increases in EELI were significantly influenced by BMI, with larger increases associated with higher BMIs (p<0.001). Conclusions: This study suggests that HFNC improve dyspnoea and oxygenation by increasing both EELV and tidal volume, and are most beneficial in patients with higher BMIs.
Resumo:
Influenza is a widespread disease occurring in seasonal epidemics, and each year is responsible for up to 500,000 deaths worldwide. Influenza can develop into strains which cause severe symptoms and high mortality rates, and could potentially reach pandemic status if the virus’ properties allow easy transmission. Influenza is transmissible via contact with the virus, either directly (infected people) or indirectly (contaminated objects); via reception of large droplets over short distances (one metre or less); or through inhalation of aerosols containing the virus expelled by infected individuals during respiratory activities, that can remain suspended in the air and travel distances of more than one metre (the aerosol route). Aerosol transmission of viruses involves three stages: production of the droplets containing viruses; transport of the droplets and ability of a virus to remain intact and infectious; and reception of the droplets (via inhalation). Our understanding of the transmission of influenza viruses via the aerosol route is poor, and thus our ability to prevent a widespread outbreak is limited. This study explored the fate of viruses in droplets by investigating the effects of some physical factors on the recovery of both a bacteriophage model and influenza virus. Experiments simulating respiratory droplets were carried out using different types of droplets, generated from a commonly used water-like matrix, and also from an ‘artificial mucous’ matrix which was used to more closely resemble respiratory fluids. To detect viruses in droplets, we used the traditional plaque assay techniques, and also a sensitive, quantitative PCR assay specifically developed for this study. Our results showed that the artificial mucous suspension enhanced the recovery of infectious bacteriophage. We were able to report detection limits of infectious bacteriophage (no bacteriophage was detected by the plaque assay when aerosolised from a suspension of 103 PFU/mL, for three of the four droplet types tested), and that bacteriophage could remain infectious in suspended droplets for up to 20 minutes. We also showed that the nested real-time PCR assay was able to detect the presence of bacteriophage RNA where the plaque assay could not detect any intact particles. Finally, when applying knowledge from the bacteriophage experiments, we reported the quantitative recoveries of influenza viruses in droplets, which were more consistent and stable than we had anticipated. Influenza viruses can be detected up to 20 minutes (after aerosolisation) in suspended aerosols and possibly beyond. It also was detectable from nebulising suspensions with relatively low concentrations of viruses.
Resumo:
The paper presents the results of a study conducted into the relationship between dwelling characteristics and occupant activities with the respiratory health of resident women and children in Lao People’s Democratic Republic (PDR). Lao is one of the least developed countries in south-east Asia with poor life expectancies and mortality rates. The study, commissioned by the World Health Organisation, included questionnaires delivered to residents of 356 dwellings in nine districts in Lao PDR over a five month period (December 2005-April 2006), with the aim of identifying the association between respiratory health and indoor air pollution, in particular exposures related to indoor biomass burning. Adjusted odds ratios were calculated for each health outcome separately using binary logistic regression. After adjusting for age, a wide range of symptoms of respiratory illness in women and children aged 1-4 years were positively associated with a range of indoor exposures related to indoor cooking, including exposure to a fire and location of the cooking place. Among women, “dust always inside the house” and smoking were also identified as strong risk factors for respiratory illness. Other strong risk factors for children, after adjusting for age and gender, included dust and drying clothes inside. This analysis confirms the role of indoor air pollution in the burden of disease among women and children in Lao PDR.
Interleukin-13 promotes susceptibility to chlamydial infection of the respiratory and genital tracts
Resumo:
Chlamydiae are intracellular bacteria that commonly cause infections of the respiratory and genital tracts, which are major clinical problems. Infections are also linked to the aetiology of diseases such as asthma, emphysema and heart disease. The clinical management of infection is problematic and antibiotic resistance is emerging. Increased understanding of immune processes that are involved in both clearance and immunopathology of chlamydial infection is critical for the development of improved treatment strategies. Here, we show that IL-13 was produced in the lungs of mice rapidly after Chlamydia muridarum (Cmu) infection and promoted susceptibility to infection. Wild-type (WT) mice had increased disease severity, bacterial load and associated inflammation compared to IL-13 deficient (−/−) mice as early as 3 days post infection (p.i.). Intratracheal instillation of IL-13 enhanced bacterial load in IL-13−/− mice. There were no differences in early IFN-g and IL-10 expression between WT and IL-13−/− mice and depletion of CD4+ T cells did not affect infection in IL-13−/− mice. Collectively, these data demonstrate a lack of CD4+ T cell involvement and a novel role for IL-13 in innate responses to infection. We also showed that IL-13 deficiency increased macrophage uptake of Cmu in vitro and in vivo. Moreover, the depletion of IL-13 during infection of lung epithelial cells in vitro decreased the percentage of infected cells and reduced bacterial growth. Our results suggest that enhanced IL-13 responses in the airways, such as that found in asthmatics, may promote susceptibility to chlamydial lung infection. Importantly the role of IL-13 in regulating infection was not limited to the lung as we showed that IL-13 also promoted susceptibility to Cmu genital tract infection. Collectively our findings demonstrate that innate IL-13 release promotes infection that results in enhanced inflammation and have broad implications for the treatment of chlamydial infections and IL-13-associated diseases.
Resumo:
Dry Powder Inhaler (DPI) technology has a significant impact in the treatment of various respiratory disorders. DPI formulations consist of a micronized drug (<5ìm) blended with an inert coarse carrier, for which lactose is widely used to date. DPIs are one of the inhalation devices which are used to target the delivery of drugs to the lungs. Drug delivery via DPI formulations is influenced by the physico-chemical characteristics of lactose particles such as size, shape, surface roughness and adhesional forces. Commercially available DPI formulations, which utilise lactose as the carrier, are not efficient in delivering drug to the lungs. The reasons for this are the surface morphology, adhesional properties and surface roughness of lactose. Despite several attempts to modify lactose, the maximum efficient drug delivery to the lungs remains limited; hence, exploring suitable alternative carriers for DPIs is of paramount importance. Therefore, the objective of the project was to study the performance of spherical polymer microparticles as drug carriers and the factors controlling their performance. This study aimed to use biodegradable polymer microspheres as alternative carriers to lactose in DPIs for achieving efficient drug delivery into the lungs. This project focused on fabricating biodegradable polymer microparticles with reproducible surface morphology and particle shape. The surface characteristics of polymeric carriers and the adhesional forces between the drug and carrier particles were investigated in order to gain a better understanding of their influence on drug dispersion. For this purpose, two biodegradable polymers- polycaprolactone (PCL) and poly (DL-lactide-co-glycolide) (PLGA) were used as the carriers to deliver the anti-asthmatic drug - Salbutamol Sulphate (SS). The first study conducted for this dissertation was the aerosolization of SS from mixtures of SS and PCL or PLGA microparticles. The microparticles were fabricated using an emulsion technique and were characterized by laser diffraction for particle size analysis, Scanning Electron Microscopy (SEM) for surface morphology and X-ray Photoelectron Spectroscopy (XPS) to obtain surface elemental composition. The dispersion of the drug from the DPI formulations was determined by using a Twin Stage Impinger (TSI). The Fine particle Fraction (FPF) of SS from powder mixtures was analyzed by High Performance Liquid Chromatography (HPLC). It was found that the drug did not detach from the surface of PCL microspheres. To overcome this, the microspheres were coated with anti-adherent agents such as magnesium stearate and leucine to improve the dispersion of the drug from the carrier surfaces. It was found that coating the PCL microspheres helped in significantly improving the FPF of SS from the PCL surface. These results were in contrast to the PLGA microspheres which readily allowed detachment of the SS from their surface. However, coating PLGA microspheres with antiadherent agents did not further improve the detachment of the drug from the surface. Thus, the first part of the study demonstrated that the surface-coated PCL microspheres and PLGA microspheres can be potential alternatives to lactose as carriers in DPI formulations; however, there was no significant improvement in the FPF of the drug. The second part of the research studied the influence of the size of the microspheres on the FPF of the drug. For this purpose, four different sizes (25 ìm, 48 ìm, 100 ìm and 150 ìm) of the PCL and PLGA microspheres were fabricated and characterized. The dispersion of the drug from microspheres of different sizes was determined. It was found that as the size of the carrier increased there was a significant increase in the FPF of SS. This study suggested that the size of the carrier plays an important role in the dispersion of the drug from the carrier surface. Subsequent experiments in the third part of the dissertation studied the surface properties of the polymeric carrier. The adhesion forces existing between the drug particle and the polymer surfaces, and the surface roughness of the carriers were quantified using Atomic Force Microscopy (AFM). A direct correlation between adhesion forces and dispersion of the drug from the carrier surface was observed suggesting that adhesion forces play an important role in determining the detachment potential of the drug from the carrier surface. However, no direct relationship between the surface roughness of the PCL or PLGA carrier and the FPF of the drug was observed. In conclusion, the body of work presented in this dissertation demonstrated the potential of coated PCL microspheres and PLGA microspheres to be used in DPI formulations as an alternative carrier to sugar based carriers. The study also emphasized the role of the size of the carrier particles and the forces of interaction prevailing between the drug and the carrier particle surface on the aerosolization performances of the drug.
Resumo:
Particulate matter (PM) emissions involve a complex mixture of solid and liquid particles suspended in a gas, where it is noted that PM emissions from diesel engines are a major contributor to the ambient air pollution problem. Whilst epidemiological studies have shown a link between increased ambient PM emissions and respiratory morbidity and mortality, studies of this design are not able to identify the PM constituents responsible for driving adverse respiratory health effects. This review explores in detail the physico-chemical properties of diesel particulate matter (DPM), and identifies the constituents of this pollution source that are responsible for the development of respiratory disease. In particular, this review shows that the DPM surface area and adsorbed organic compounds play a significant role in manifesting chemical and cellular processes that if sustained can lead to the development of adverse respiratory health effects. The mechanisms of injury involved included: inflammation, innate and acquired immunity, and oxidative stress. Understanding the mechanisms of lung injury from DPM will enhance efforts to protect at-risk individuals from the harmful respiratory effects of air pollutants.
Resumo:
Background: Antibiotics misuse is currently one of the major public health issues worldwide. This misuse can lead to the development of bacterial resistance, increasing the burden of chronic diseases, rising costs of health services, and the development of side effects. Several factors may influence this pattern of overuse. Objectives:This article will review the pertinent factors contributing to the overuse of antibiotics worldwide, and to assess the intervention strategies to limit this overuse. Methods: studies about antibiotics use in children were reviewed from several electronic databases, such as MEDLINE and Pubmed. Results: Factors contributing to the overuse of antibiotics could include psychosocial factors, such as behaviors and attitudes (e.g. self-medication, over-the-counter medication, or patients/parents pressure), and demographic factors, such as socio-economic status and education level. Several intervention strategies were reported to be effective in reducing the overuse of antibiotics, such as health education, doctor-patient communication, and policies change. Multifaceted interventions were found to be the most effective in reducing the antibiotics overuse.
Resumo:
17.1 Drugs for bronchial asthma and Chronic Obstructive Pulmonary Disease (COPD) 17.1.1 Introduction to asthma 17.1.2 Introduction to COPD 17.1.3 Drug delivery by inhalation 17.1.4 Drugs to treat 17.1.4.1 β2-adrenoceptor agonists 17.1.4.2 Muscarinic receptor antagonists 17.1.4.3 Leukotriene receptor antagonists 17.1.4.4 Theophylline 17.1.4.5 Oxygen for COPD 17.1.5 Drugs to prevent asthma 31.5.1 Glucocorticoids 31.5.2 Cromolyn sodium 17.1.6 Combination to treat and prevent asthma 17.1.7 Drug for allergic asthma – omalizumab 17.1.8 Emergency treatment of asthma 17.2. Expectorants, mucolytics, cough and oxygen 17.2.1 Introduction to expectorants and mucolytics 17.2.2 Expectorants 17.2.3 Mucolytics 17.2.4 Cough 17.2.5 Oxygen 17.3. Drugs for rhinitis and rhinorrea 17.3.1 Introduction 17.3.2 Histamine and H1-receptor antagonists 17.3.3 Sympathomimetic 17.3.4 Muscarinic receptor antagonists 17.3.4 Cromolyn sodium 17.3.5 Glucocorticoids
Resumo:
Critically ill patients receiving extracorporeal membrane oxygenation (ECMO) are often noted to have increased sedation requirements. However, data related to sedation in this complex group of patients is limited. The aim of our study was to characterise the sedation requirements in adult patients receiving ECMO for cardiorespiratory failure. A retrospective chart review was performed to collect sedation data for 30 consecutive patients who received venovenous or venoarterial ECMO between April 2009 and March 2011. To test for a difference in doses over time we used a regression model. The dose of midazolam received on ECMO support increased by an average of 18 mg per day (95% confidence interval 8, 29 mg, P=0.001), while the dose of morphine increased by 29 mg per day (95% confidence interval 4, 53 mg, P=0.021) The venovenous group received a daily midazolam dose that was 157 mg higher than the venoarterial group (95% confidence interval 53, 261 mg, P=0.005). We did not observe any significant increase in fentanyl doses over time (95% confidence interval 1269, 4337 µg, P=0.94). There is a significant increase in dose requirement for morphine and midazolam during ECMO. Patients on venovenous ECMO received higher sedative doses as compared to patients on venoarterial ECMO. Future research should focus on mechanisms behind these changes and also identify drugs that are most suitable for sedation during ECMO.
Resumo:
Objective: A literature review to examine the incorporation of respiratory assessment into everyday surgical nursing practice; possible barriers to this; and the relationship to patient outcomes. Primary argument: Escalating demands on intensive care beds have led to highly dependent patients being cared for in general surgical ward areas. This change in patient demographics has meant the knowledge and skills required of registered nurses in these areas has expanded exponentially. The literature supported the notion that postoperative monitoring of vital signs should include the fundamental assessment of respiratory rate; depth and rhythm; work of breathing; use of accessory muscles and symmetrical chest movement; as well as auscultation of lung fields using a stethoscope. Early intervention in response to changes in a patient's respiratory health status impacts positively on patient health outcomes. Substantial support exists for the contention that technologically adept nurses who also possess competent respiratory assessment skills make a difference to respiratory care. Conclusions: Sub-clinical respiratory problems have been demonstrated to contribute to adverse events. There is a paucity of research knowledge as to whether respiratory education programs and associated inservice make a difference to nursing clinical practice. Similarly, the implications for associated respiratory educational needs are not well documented, nor has a research base been sufficiently developed to guide nursing practice. Further research has the potential to influence the future role and function of the registered nurse by determining the importance of respiratory education programs on post-operative patient outcomes.
Resumo:
Background: Bicycle commuting in an urban environment of high air pollution is known as a potential health risk, especially for susceptible individuals. While risk management strategies aimed to reduce motorised traffic emissions exposure have been suggested, limited studies have assessed the utility of such strategies in real-world circumstances. Objectives: The potential of reducing exposure to ultrafine particles (UFP; < 0.1 µm) during bicycle commuting by lowering interaction with motorised traffic was investigated with real-time air pollution and acute inflammatory measurements in healthy individuals using their typical, and an alternative to their typical, bicycle commute route. Methods: Thirty-five healthy adults (mean ± SD: age = 39 ± 11 yr; 29% female) each completed two return trips of their typical route (HIGH) and a pre-determined altered route of lower interaction with motorised traffic (LOW; determined by the proportion of on-road cycle paths). Particle number concentration (PNC) and diameter (PD) were monitored in real-time in-commute. Acute inflammatory indices of respiratory symptom incidence, lung function and spontaneous sputum (for inflammatory cell analyses) were collected immediately pre-commute, and one and three hours post-commute. Results: LOW resulted in a significant reduction in mean PNC (1.91 x e4 ± 0.93 x e4 ppcc vs. 2.95 x e4 ± 1.50 x e4 ppcc; p ≤ 0.001). Besides incidence of in-commute offensive odour detection (42 vs. 56 %; p = 0.019), incidence of dust and soot observation (33 vs. 47 %; p = 0.038) and nasopharyngeal irritation (31 vs. 41 %; p = 0.007), acute inflammatory indices were not significantly associated to in-commute PNC, nor were these indices reduced with LOW compared to HIGH. Conclusions: Exposure to PNC, and the incidence of offensive odour and nasopharyngeal irritation, can be significantly reduced when utilising a strategy of lowering interaction with motorised traffic whilst bicycle commuting, which may bring important benefits for both healthy and susceptible individuals.