996 resultados para Resistencia de materiais


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nickel alloys have a chemical composition with high tenor of alloy elements which are responsible for the material's mechanical and thermal properties, but also are the main causative of problems during the machining, making the process difficult. The objective of this work is the study of the machining by external cylindrical turning of the nickel based alloy Nimonic 80A, seeking the machining optimization of this alloy, seeking the best condition of lubricant fluid use, providing real increases of productivity without the need of investments in new production means. Besides, the results of this work should offer more detailed information regarding the behavior of this alloy in relation to machining by turning. The machining experiences were accomplished in a specimen of the nickel alloy, considering the machining parameters: cutting speed (75 and 90 m/min), cutting depth (0,8 mm) and feed rate (0,15 and 0,18 mm/v). The valuations were accomplished in a CNC lathe and tools with of hard metal inserts. After each stage of the turning the measures of the cutting length were accomplished, of the waste of the tools through a magnifying glass (8x) and the roughness of the specimen evaluated in each phase of the process, with the aid of a portable roughness meter. Through light optical microscopy it was possible to observe the wear of the cutting tools for each appraised condition. The roughness values, Ra and Ry, for the appraised conditions were always superiors to the theoretical values. After analysis of the results it was possible to end that, the best acting for this work strip tested it was obtained for ap=0,8mm: f=0,15mm/rev and VC=75m/min, what resulted in a larger cutting length (1811 m)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Load transportation in brazilian territory is made difficult by a deficient highway network, result of low maintenance and lack of government supervision. The problem aggravates when we consider the transportation of indivisible loads, mainly because the brazilian highways are not prepared for such task and few companies in Brazil have the necessary equipment suited for this kind of transport. In this dissertation it will be shown the analysis of a specific equipment to transport overweight indivisible loads, called hydraulic modular multi axle trailer. From an existing project (RB.04LE-01), manufactured and homologated in Brazil, it has been studied how the components in this trailer work so it could have been possible to elaborate a new model (RB.04LE-02), with two main objectives: reduction of costs and weight with subsequent increase in the liquid load for roadway transportation. The trailer’s components analyses were made utilizing the theory of fatigue strength of materials and finite element method with the von Misses criteria for a more safety when realizing the calculations

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The search for materials with higher properties and characteristics (wear resistance, oxidation, corrosion, etc.) has driven research of various materials. Among the materials that are being studied with such properties and characteristics are super alloys based on nickel which has an important role in the aeronautical, automotive, marine, production of gas turbines and now in space vehicles, rocket engineering , experimental aircraft, nuclear reactors, steam-powered plants, petrochemical and many other applications because besides having all the characteristics and properties mentioned above also have an excellent performance at high temperatures. The super alloy based on nickel studied in this work is the super alloy Pyromet 31v normally used in the manufacture of exhaust valves in common engines and diesel engines of high power by cater requirements such as mechanical strength and corrosion resistance at temperatures of approximately 815 ° C. The objective of this work is to produce results to demonstrate more specific information about the real influence of coatings on cutting tools and cutting fluids in turning and thus promote the optimization of the machining of these alloys. The super alloy Pyromet 31v was processed through turning, being performed with various machining parameters such as cutting speed, feed rate, depth in conditions of Minimum Amount of Fluid (MAF), abundant fluid, cutting tools with coating and without coating in early in his work life and with wear. After turning were obtained several samples of chips and the part generated during the machining process, was measured roughness of the material, subsequently made macrostructural analysis of the tools used order to detect possible wear and microstructural analysis of samples collected being that the latter was used for Optical Microscopy, Scanning Electron Microscopy (SEM) and ... (Complete abstract click electronic access below)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The non-ferrous materials have got so many mechanical, physical and chemical advantageous properties so that is provided to them consolidated position in industry. In this context, aluminium alloys have been seen a lot on many applications of engineering areas – specially on automotive, aeronautical and aerospace due to their main properties such as low density, high corrosion resistance, favorable structure weight / material resistance relation, among others characteristics that are mencioned through this study. This study aims to analyze the aluminium alloys behavior on a general context when they are used on turning process, taking for examples the 6262 and 7050 aluminium alloys. In this way, the analysis studies the datas obtained during the turning tests realized on 3 steps each one; those datas are concerning the medium and total rugosities – obtained with the assistance of a portable Surface Roughness Finish Tester, as well as the chips obtained during the tests - visual analysis, and the cutting tools wear – with the assistance of an optical microscope, under different conditions of application of cutting fluids (dry machining, application of coolant in abundance and MQL – Minimum Quantity of Lubricant). The results concerning this study show detailed information about influence of cutting fluids on the machining by turning of the aluminium alloys related on this work and also about aluminium alloys in general when they are used on turning processes with different conditions from one another. By this way, it was evident the MQL technique is the best one for the 6262 alloy. However, for 7050 alloy, it was evident that the dry machining is responsible for the best results

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Have long studied the distribution of stresses in the cylinder. When this thickness is less than or equal to 10% of the inner radius is possible to consider a uniform distribution along the thickness of the tube. However, when the thickness is greater than 10% of the inner radius is necessary to consider the theory of thick-walled cylinders. This theory shows that when the thickness increases on the radius, the stresses do not act uniformly. The objective of this study is to determine the maximum stresses in thick-walled cylinders by comparing the results obtained by the theory of elasticity and the finite element method

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are many studies about longitudinal modulus of elasticity of wood, but you can´t say the same of transverse modulus, especially for conifers. The study aimed to characterize and compare the species Pinus elliottii var. elliottii and Pinus elliottii var. elliottii x Pinus cariabeae hondurensis (hybrid), and the longitudinal modulus of elasticity (E) and lateral (G) in bending, to analyze the modulus of elasticity in different spaces and to verify the species studied the ideal range is equal to 21 times the height of the specimen, as prescribed in the normative document NBR 7190/1997, as well as analyzing the relationship G = E/20 defined in the normative document NBR 7190/1997. The wood came from the farm located in Paranapanema, split at the mill São José and the rest of the work was conducted at the Experimental Itapeva Campus - UNESP. Were removed fourteen specimens of each species. The average values of the modulus of elasticity and cross were, respectively, 5828 MPa and 452 MPa for Pinus elliottii var. elliottii and 6407 MPa and 320 MPa for the species of Pinus elliottii var. elliottii x Pinus cariabeae hondurensis (hybrid). The trend lines for the plotted graphs showed an exponential behavior to near linear 21he will equal the constant after this value. We have found the relationship G = E/13, for Pinus elliottii var. elliottii and G = E/20 for hybrid. The results of the modulus and strength for Pinus elliottii var. elliottii and the hybrid were lower than those reported in the literature, showing that this batch inferior quality to apply to structures

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to greater productivity in the auto industry and the high competition in the current market, employees are required to perform repeated movements and often, with short intervals of rest. This daily exposure causes muscle tension and overloads occasional, thus creating problems and psychosocial stress. Currently companies are concerned with the welfare of the employee, where the main focus is product quality and life of the worker, thus justifying such a study. Therefore , this technical work to assist the master's thesis of graduate student Daniel Rodriguez , was developed with the objective is to analyze , develop, design and construct a coupled to a load cell device simulating a stitcher to be used in an industry the posts stapling upholstery of seats . Are the stages of design and construction detailed in this work and its positive results in relation to the technical part of the study

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years a great worldwide interest has arisen for the development of new technologies that enable the use of products with less environmental impact. The replacement of synthetic fiber plants is a possibility very important because this fiber is renewable, biodegradable and few cost and cause less environmental impact. Given the above, this work proposes to develop polymeric composites of epoxy resin and study the behavior of these materials. Both, the epoxy resin used as matrix in the manufacture of sapegrass fiber composite, as tree composites formed by: epoxy/unidirectional sapegrass long fiber, 75% epoxy/25% short fiber, by volume, and 80% epoxy/20% short fiber, by volume, were characterized by bending, and the composites produced with short fibers random were inspected by Optical Microscopy and Acoustics Inspection (C-Scan). For the analysis of the sapegrass fiber morphology, composites 75% epoxy/25% short fiber (sheet chopped) and 80% epoxy/20% short fiber images were obtained by optical microscope and the adhesion between polymer/fiber was visualized. As results, the flexural strength of composites epoxy/unidirectional long fibers, 75% epoxy/25% short fiber and 80% epoxy/20% short fiber were 70.36 MPa, 21.26 MPa, 25.07 MPa, respectively. Being that composite showed that the best results was made up of long fibers, because it had a value of higher flexural strength than other composites analyzed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Airplane Motor Cradles have a complex geometry, since they require different conbinations between different tubes and TIG welded in several angles. In T-25 aircraft and Universal T-27 Tucano (EMBRAER / FAB), besides having to bear the engine balance, these components maintain fixed the nose landing gear in another extremity. They are considered critical to flight safety, and for this reason, the aviation standards are extremely rigid in their production, imposing a zero index” of defects on the final weld metal quality. These structures may be containing an historical of welding repairs, whose effects on their structural integrity are not computed. In this work we analyzed the standardised AISI 4130 steel and the raw steel of tubes to the Airplane Motor Cradles. First of all, microscopy and microanalysis of the base steel, then we analyzed the effects of the TIG weld. Tensile testing was conducted to measure the difference between the mechanical properties of standardised steel and without this treatment

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nickel superalloys are known as being a material with poor machinability, they have some properties like high hardness, good resistance at high temperature, tendency to weld with the tool material at high temperature, etc. In the aerospace, biomedical and petrochemical industry, are increasing the need to use materials that resist to aggressive process and environment. In these uses, it has increased the use of nickel-based superalloys like Inconel 718 and consequently the need to research new techniques and tools to improve the machinability of this material. For the superalloys and resistant alloys at high temperatures is considered that the difficulty in the machining regards to the combination of the relatively high cutting forces and high temperatures that grow during the machine process, causing deformation or breakage of the cutting tool. This work purpose is to develop the study of the machining of external cylindrical turning of the nickel based alloy Inconel 718, using ceramic tools, seeking the optimization of machining this alloy, looking to provide real productive increases without the need of investments in new production means. The machining test were accomplished using commercials hard metal tools and the results were compared each other to find the best tool and the best parameter. The conclusion is that the tool TNMG160408-23 -class 1005- was the better one, when used with the parameter 60_15_08

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents a study that aims to validate the fatigue analyses developed on finite element commercial software, ANSYS Workbench. It was based on mechanical tests development of traction and hardness, to verify the mechanical properties of material that the shaft was manufactured (ABNT 1045 steel), it was developed bend test, with purpose to prove the confiability degree of computational analyses, obtaining the maximum stress in a work condition determined with 40 [kgf] of load applied, and at the end, was developed the fatigue test to obtain the number of cycles that the transmission shaft can support in a work condition with 8 [kgf] of load applied. The results obtained during the work present, have to be quite satisfactory with the theoretically expected

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of mechanical properties of high-alloy special steels is of great interest of the steel industry due to the great demand by companies that manufacture automotive components of high criticality, and also because of its high commercial value. However, the development of this type of alloy metals demand highly technical knowledge. Among these extremely important kinds of steel, the subject which is the interest of this study is the special steel modified by niobium. The manganese and niobium are the main alloying elements in the composition of these steels, both of them increase the stability of the austenite region, however, manganese increases the hardenability and tensile yield strength, and niobium increases the mechanical strength and promotes refining the grain. The mechanical characterization of steel SAE 1312 modified the niobium was made in order to gain a better understanding of the influence on the mechanical properties caused by aging at different temperatures and for different reductions in the drawing of gauge material. This characterization was made by means of tensile test and hardness. This material showed an increase in yield strength and hardness when gauge with large reductions during the wiredrawing, but when subjected to aging temperatures higher than 300 ° C had a slight loss of these properties

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In engineering projects, it’s fundamental to determine the active loads in components in order to guarantee acceptable values of safety and reliability according to project specifications. On the other hand, force measurement methods might be very complex and impracticable in some cases and, so that, load cells with eletric resistance strain gages can be applied as a simple and accurate option to measure the required load. The main purpose of this paper is to present the development of a load cell that measures uniaxial forces using electric resistance strain gages without being influenced by the location of the loading in a cantilever beam. For that, it was taken as basis a secondary purpose which is to present a general study of basic and wide concepts about transducers, load cells and extensometers primarily. Information such as: loading and measurements types, characteristics of the presented devices as well as factors that influence its functioning, the most common kinds of Wheatstone bridge links, the main points of a load cell project, cements used to fix extensometers and, finally, the project itself with the tests of the built transducer are presented. By the end of this paper, all the results are shown and analyzed, concluding about the designed load cell and the work itself