977 resultados para Residence Time Distributions
Resumo:
Traditional waste stabilisation pond (WSP) models encounter problems predicting pond performance because they cannot account for the influence of pond features, such as inlet structure or pond geometry, on fluid hydrodynamics. In this study, two dimensional (2-D) computational fluid dynamics (CFD) models were compared to experimental residence time distributions (RTD) from literature. In one of the-three geometries simulated, the 2-D CFD model successfully predicted the experimental RTD. However, flow patterns in the other two geometries were not well described due to the difficulty of representing the three dimensional (3-D) experimental inlet in the 2-D CFD model, and the sensitivity of the model results to the assumptions used to characterise the inlet. Neither a velocity similarity nor geometric similarity approach to inlet representation in 2-D gave results correlating with experimental data. However. it was shown that 2-D CFD models were not affected by changes in values of model parameters which are difficult to predict, particularly the turbulent inlet conditions. This work suggests that 2-D CFD models cannot be used a priori to give an adequate description of the hydrodynamic patterns in WSP. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Background/Aims: Liver clearance models are based on information (or assumptions) on solute distribution kinetics within the microvasculatory system, The aim was to study albumin distribution kinetics in regenerated livers and in livers of normal adult rats, Methods: A novel mathematical model was used to evaluate the distribution space and the transit time dispersion of albumin in livers following regeneration after a two-thirds hepatectomy compared to livers of normal adult rats. Outflow curves of albumin measured after bolus injection in single-pass perfused rat livers were analyzed by correcting for the influence of catheters and fitting a long-tailed function to the data. Results: The curves were well described by the proposed model. The distribution volume and the transit time dispersion of albumin observed in the partial hepatectomy group were not significantly different from livers of normal adult rats. Conclusions: These findings suggest that the distribution space and the transit time dispersion of albumin (CV2) is relatively constant irrespective of the presence of rapid and extensive repair. This invariance of CV2 implies, as a first approximation, a similar degree of intrasinusoidal mixing, The finding that a sum of two (instead of one) inverse Gaussian densities is an appropriate empirical function to describe the outflow curve of vascular indicators has consequences for an improved prediction of hepatic solute extraction.
Resumo:
The conventional convection-dispersion (also called axial dispersion) model is widely used to interrelate hepatic availability (F) and clearance (Cl) with the morphology and physiology of the liver and to predict effects such as changes in liver blood flow on F and Cl. An extended form of the convection-dispersion model has been developed to adequately describe the outflow concentration-time profiles for vascular markers at both short and long times after bolus injections into perfused livers. The model, based on flux concentration and a convolution of catheters and large vessels, assumes that solute elimination in hepatocytes follows either fast distribution into or radial diffusion in hepatocytes. The model includes a secondary vascular compartment, postulated to be interconnecting sinusoids. Analysis of the mean hepatic transit time (MTT) and normalized variance (CV2) of solutes with extraction showed that the discrepancy between the predictions of MTT and CV2 for the extended and conventional models are essentially identical irrespective of the magnitude of rate constants representing permeability, volume, and clearance parameters, providing that there is significant hepatic extraction. In conclusion, the application of a newly developed extended convection-dispersion model has shown that the unweighted conventional convection-dispersion model can be used to describe the disposition of extracted solutes and, in particular, to estimate hepatic availability and clearance in booth experimental and clinical situations.
Resumo:
The distributed-tubes model of hepatic elimination is extended to include intermixing between sinusoids, resulting in the formulation of a new, interconnected-tubes model. The new model is analysed for the simple case of two interconnected tubes, where an exact solution is obtained. For the case of many strongly-interconnected tubes, it is shown that a zeroth-order approximation leads to the convection-dispersion model. As a consequence the dispersion number is expressed, for the first time, in terms of its main physiological determinants: heterogeneity of flow and density of interconnections between sinusoids. The analysis of multiple indicator dilution data from a perfused liver preparation using the simplest version of the model yields the estimate 10.3 for the average number of interconnections. The problem of boundary conditions for the dispersion model is considered from the viewpoint that the dispersion-convection equation is a zeroth-order approximation to the equations for the interconnected-tubes model. (C) 1997 Academic Press Limited.
Resumo:
The outflow-concentration-time profiles for lignocaine (lidocaine) and its metabolites have been measured after bolus impulse administration of [C-14]lignocaine into the perfused rat liver. Livers from female Sprague-Dawley rats were perfused in a once-through fashion with red-blood-cell-free Krebs-Henseleit buffer containing 0 or 2% bovine serum albumin. Perfusate flow rates of 20 and 30 mL min(-1) were used and both normal and retrograde flow directions were employed. Significant amounts of metabolite were detected in the effluent perfusate soon after lignocaine injection. The early appearance of metabolite contributed to bimodal outflow profiles observed for total C-14 radioactivity. The lignocaine outflow profiles were well characterized by the two-compartment dispersion model, with efflux rate << influx rate. The profiles for lignocaine metabolites were also characterized in terms of a simplified two-compartment dispersion model. Lignocaine was found to be extensively metabolized under the experimental conditions with the hepatic availability ranging between 0.09 and 0.18. Generally lignocaine and metabolite availability showed no significant change with alterations in perfusate flow rate from 20 to 30 mt min(-1) or protein content from 0 to 2%. A significant increase in lignocaine availability occurred when 1200 mu M unlabelled lignocaine was added to the perfusate. Solute mean transit times generally decreased with increasing flow rate and with increasing perfusate protein content. The results confirm that lignocaine pharmacokinetics in the liver closely follow the predictions of the well-stirred model. The increase in lignocaine availability when 1200 mu M unlabelled lignocaine was added to the perfusate is consistent with saturation of the hydroxylation metabolic pathways of lignocaine metabolism.
Resumo:
This work studied the structure-hepatic disposition relationships for cationic drugs of varying lipophilicity using a single-pass, in situ rat liver preparation. The lipophilicity among the cationic drugs studied in this work is in the following order: diltiazem. propranolol. labetalol. prazosin. antipyrine. atenolol. Parameters characterizing the hepatic distribution and elimination kinetics of the drugs were estimated using the multiple indicator dilution method. The kinetic model used to describe drug transport (the two-phase stochastic model) integrated cytoplasmic binding kinetics and belongs to the class of barrier-limited and space-distributed liver models. Hepatic extraction ratio (E) (0.30-0.92) increased with lipophilicity. The intracellular binding rate constant (k(on)) and the equilibrium amount ratios characterizing the slowly and rapidly equilibrating binding sites (K-S and K-R) increase with the lipophilicity of drug (k(on) : 0.05-0.35 s(-1); K-S : 0.61-16.67; K-R : 0.36-0.95), whereas the intracellular unbinding rate constant (k(off)) decreases with the lipophilicity of drug (0.081-0.021 s(-1)). The partition ratio of influx (k(in)) and efflux rate constant (k(out)), k(in)/k(out), increases with increasing pK(a) value of the drug [from 1.72 for antipyrine (pK(a) = 1.45) to 9.76 for propranolol (pK(a) = 9.45)], the differences in k(in/kout) for the different drugs mainly arising from ion trapping in the mitochondria and lysosomes. The value of intrinsic elimination clearance (CLint), permeation clearance (CLpT), and permeability-surface area product (PS) all increase with the lipophilicity of drug [CLint (ml . min(-1) . g(-1) of liver): 10.08-67.41; CLpT (ml . min(-1) . g(-1) of liver): 10.80-5.35; PS (ml . min(-1) . g(-1) of liver): 14.59-90.54]. It is concluded that cationic drug kinetics in the liver can be modeled using models that integrate the presence of cytoplasmic binding, a hepatocyte barrier, and a vascular transit density function.
Resumo:
Evaporative cooling is extremely important for large-scale operation of rotating drum bioreactors (RDBs). Outlet water vapour concentrations were measured for a RDB containing wet wheat bran with the aim of determining the mass transfer coefficient for evaporation from the bran bed to the headspace. Mass transfer was expressed as the mass transfer coefficient times the area for transfer per unit volume of void space in the drum. Values of ka' were determined under combinations of aeration superficial velocities ranging from 0.006 to 0.017 ms(-1) and rotation rates ranging from 0 to 9 rpm. Mass transfer coefficients were evaluated using a variety of residence time distributions (RTDs) for flow in the gas phase including plug flow and well-mixed and a Central Jet RTD based on RTD studies. If plug flow is assumed, the degree of holdup at low effective Peclet (Pe(eff)) numbers gives an apparent under-estimate of ka' compared with empirical correlations. Values of ka' calculated using the Central Jet RTD agree well with values of ka' from literature correlations. There was a linear relationship between ka' and effective Peclet number: ka' = 2.32 x 10(-3) Pe(eff). (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Flavoring is still a difficult problem in the snack food industry because of the high volatility of flavors and their instability under extrusion condition. Although postextrusion added flavor is commonly used, it suffers from numerous drawbacks. Flavor losses at the exit die because flash distillation is a critical issue and can only be minimized by controlling the pressure difference at the end of the barrel and the exit die, which, however, affects other desirable product characteristics. Residence time distribution (RTD), as an important intermediate process variable that among others controls the extent of reactions, can also be a major determinant on flavor retention during extrusion. Encapsulation of flavors is a promising alternative to enhance the retention of preextrusion added flavor during extrusion. The capsules should withstand high temperature and shear conditions in, the extruder barrel. Various encapsulation techniques and their encapsulated flavor characteristics are illustrated.
Resumo:
Nonalcoholic fatty liver disease is the most common of all liver diseases. The hepatic disposition [H-3]palmitate and its low-molecular-weight metabolites in perfused normal and steatotic rat liver were studied using the multiple indicator dilution technique and a physiologically based slow diffusion/bound pharmacokinetic model. The steatotic rat model was established by administration of 17alpha-ethynylestradiol to female Wistar rats. Serum biochemistry markers and histology of treated and normal animals were assessed and indicated the presence of steatosis in the treatment group. The steatotic group showed a significantly higher alanine aminotransferase-to-aspartate aminotransferase ratio, lower levels of liver fatty acid binding protein and cytochrome P-450, as well as microvesicular steatosis with an enlargement of sinusoidal space. Hepatic extraction for unchanged [H-3]palmitate and production of low-molecular-weight metabolites were found to be significantly decreased in steatotic animals. Pharmacokinetic analysis suggested that the reduced extraction and sequestration for palmitate and its metabolites was mainly attributed to a reduction in liver fatty acid binding protein in steatosis.
Resumo:
Understanding the driving forces for the hepatic uptake of endogenous and exogenous substrates in isolated cells and organs is fundamental to describing the underlying hepatic physiology/pharmacology. In this study we investigated whether uptake of plasma protein-bound [H-3]-palmitate across the hepatocyte wall is governed by the transmembrane electrical potential difference (PD). Uptake was studied in isolated hepatocytes and isolated perfused rat livers (IPL). Protein-binding and vasoactive properties of the different perfusates were determined using in vitro heptane/buffer partitioning studies and the multiple indicator dilution (MID) technique in the IPL, respectively. Altering hepatocyte PD by perfusate ion substitution resulted in either a substantial depolarization (-14 +/- 1 mV, n = 12, mean +/- S.E., substituting choline for Na+) or hyperpolarization (-46 +/- 3 mV, n = 12, mean +/- S.E., substituting nitrate for Cl-). Perfusate ion substitution also affected the equilibrium binding constant for the palmitate-albumin complex. IPL studies suggested that, other than with gluconate buffer, hepatic [H-3]-palmitate extraction was not affected by the buffer used, implying PD was not a determinant of extraction. [H-3]-Palmitate extraction was much lower (p < 0.05) when gluconate was substituted for Cl- ion. This work contrasts with that for the extraction of [H-3]-alanine where hepatic extraction fraction was significantly reduced during depolarization. Changing the albumin concentration did not affect hepatocyte PD, and [H-3]-palmitate clearance into isolated hepatocytes was not affected by the buffers used. MID studies with vascular and extravascular references revealed that, with the gluconate substituted buffer, the extravascular volume possibly increased the diffusional path length thus explaining reduced [H-3]-palmitate extraction fraction in the IPL.
Resumo:
The flow characteristics of neutral sodium silicate glass in an open hearth regenerative furnace have been studied using a one tenth scale physical model. The constraints of similarity have been investigated and discussed, and the use of sodium liquor as a cold modelling solution has been developed. Methylene Blue and Sulphacid Brill Pink are used as delineators, and a technique for analysing the concentration of each even in a mixture has been developed. The residence/time distributions from the model have been simulated using a mixed model computer program which identifies the nature and size of the most significant flow streams within the furnace. The results clearly show that the model gives a true representation of the furnace and illustrates a number of alternatives for operating or design changes which will lead to improved production efficiency.
Resumo:
This research project examined the feasibility of using a cavity transfer mixer (CTM) as a continuous reactor to perform reactions between either solid or liquid reagents and polymer melt; reactions which have previously been typically carried out in batch reactor systems. Equipment has been developed to allow uniform and reproducible introduction of reagents into the polymer melt. Reactions have also been performed using batch processing equipment to enable comparison with the performance of the CTM. It was concluded that: a) there are certain reactions which cannot be carried out in a CTM, but which can be performed in a batch system such as a mill or a sigma blade mixer. This was found to be the case for some neutralisation reactions where the product was quasi crosslinked. b) the reactions that can be carried out in a CTM are performed more efficiently in a CTM than on a batch process. For example, when monomers were to be grafted onto polymers, this was more safely and efficiently performed in the CTM than in a mill or a sigma blade mixer. Residence time distributions (RTDs) for three CTMs were studied in order to gain an insight into the effect of CTM geometry on RTD, polymer melt flow pattern and reactor performance. A mathematical model has been developed to predict the influence of process parameters on RTD and the results compared with experimentally observed trends. The comparison was good. A programme of research has been drawn up to form the basis of an industrially based sponsored development project of the CTM reactor. This work programme was successfully marketed to companies with commercial interest in modified rubber and plastics as an integral part of the research programme of this thesis and the sponsored research programme has paralleled the work reported here.
Resumo:
Valmistettaessa kiteisiä tuotteita kemianteollisuudessa jatkuvatoimisuudella voidaan saavuttaa merkittäviä etuja panosprosesseihin verrattuna. Toistettavuus ja tuotekiteiden ominaisuudet paranevat ja kustannussäästöjä saadaan sekä kiteytyksestä että mahdollisesta jatkokäsittelyn yksinkertaistumisesta. Hienokemianteollisuudessa panoskiteytys on kuitenkin edelleen vallitseva kiteytysmenetelmä pienten tuotantovolyymien, tuotteiden vaihtelevuuden ja panoskiteyttimien puhdistamisen helppouden vuoksi. Ultraäänen vaikutusta kiteytykseen on tutkittu kattavasti viimevuosina. Tehoultraäänen aiheuttamalla kavitaatiolla on havaittu olevan merkittäviä kiteytystä edistäviä vaikutuksia. Yhdistämällä jatkuvatoimiseen putkivirtauskiteyttimeen tehoultraäänen tukkeutumista estävä ja kiteytystä edistävä vaikutus saadaan systeemi, jota voidaan pitää varteenotettavana vaihtoehtona panoskiteyttimille hienokemianteollisuudessa. Tässä työssä määritettiin markkinapotentiaali jatkuvatoimiselle ultraääniprosessointijärjestelmälle eurooppalaisten hienokemianteollisuuden yritysten parissa. Markkinapotentiaalin määritys tehtiin makrotasolla nojautumalla toimialatilastoihin, jotka poimittiin Amadeus-tietokannasta. Jatkuvatoimista ultraääniprosessointijärjestelmää myös kehitettiin edelleen lisäämällä moduulien määrää kolmesta viiteen, testaamalla eri putkivaihtoehtoja ja määrittämällä korkeimmat käyttökonsentraatiot putkivirtauskiteyttimelle kolmella eri malliaineella. Ultraäänen vaikutusta viipymäaikajakaumaan tarkasteltiin pulssikokeiden avulla kolmen eri putkivaihtoehdon tapauksessa. Ultaääniprosessointijärjestelmän putkivaihtoehdoista 6 mm sisähalkaisijaisessa teräsputkessa saavutettiin korkeammat saannot ja pienemmät tuotekiteet kuin 4 mm sisähalkaisijaisessa teräsputkessa. Ultraääni ei läpäissyt 4 mm sisähalkaisijaista polyamidiputkea riittävän tehokkaasti ehkäistäkseen systeemin tukkeutumista.
Resumo:
The assessment of the thermal process impact in terms of food safety and quality is of great importance for process evaluation and design. This can be accomplished from the analysis of the residence time and temperature distributions coupled with the kinetics of thermal change, or from the use of a proper time-temperature integrator (TTI) as indicator of safety and quality. The objective of this work was to develop and test enzymic TTIs with rapid detection for the evaluation of continuous HTST pasteurization processes (70-85 degrees C, 10-60 s) of low-viscosity liquid foods, such as milk and juices. Enzymes peroxidase, lactoperoxidase and alkaline phosphatase in phosphate buffer were tested and activity was determined with commercial reflectometric strips. Discontinuous thermal treatments at various time-temperature combinations were performed in order to adjust a first order kinetic model of a two-component system. The measured time-temperature history was considered instead of assuming isothermal conditions. Experiments with slow heating and cooling were used to validate the adjusted model. Only the alkaline phosphatase TTI showed potential to be used for the evaluation of pasteurization processes. The choice was based on the obtained z-values of the thermostable and thermolabile fractions, on the cost and on the validation tests. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this work, the main factors affecting the rheological behavior of polyethylene terephtalate (PET) in the linear viscoelastic regime (water content, time delay before test, duration of experiment, and temperature) were accessed. Small amplitude oscillatory shear tests were performed after different time delays ranging from 300 to 5000 s for samples with water contents ranging from 0.02 to 0.45 wt %. Time sweep tests were carried out for different durations to explain the changes undergone by PET before and during small amplitude oscillatory shear measurements. Immediately after the time sweep tests, the PET samples were removed from the rheometer, analyzed by differential scanning calorimetry and their molar mass was obtained by viscometry analysis. It was shown that for all the samples, the delay before test and residence time within the rheometer (i.e. duration of experiment) result in structural changes of the PET samples, such as increase or decrease of molar mass, broadening of molar mass distribution, and branching phenomena. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 116: 3525-3533, 2010