981 resultados para Researchers’ network
Resumo:
Too Big to Ignore (TBTI; www.toobigtoignore.net) is a research network and knowledge mobilization partnership established to elevate the profile of small-scale fisheries (SSF), to argue against their marginalization in national and international policies, and to develop research and governance capacity to address global fisheries challenges. Network participants and partners are conducting global and comparative analyses, as well as in-depth studies of SSF in the context of local complexity and dynamics, along with a thorough examination of governance challenges, to encourage careful consideration of this sector in local, regional and global policy arenas. Comprising 15 partners and 62 researchers from 27 countries, TBTI conducts activities in five regions of the world. In Latin America and the Caribbean (LAC) region, we are taking a participative approach to investigate and promote stewardship and self-governance in SSF, seeking best practices and success stories that could be replicated elsewhere. As well, the region will focus to promote sustainable livelihoods of coastal communities. Key activities include workshops and stakeholder meetings, facilitation of policy dialogue and networking, as well as assessing local capacity needs and training. Currently, LAC members are putting together publications that examine key issues concerning SSF in the region and best practices, with a first focus on ecosystem stewardship. Other planned deliverables include comparative analysis, a regional profile on the top research issues on SSF, and a synthesis of SSF knowledge in LAC
Resumo:
The scale down of transistor technology allows microelectronics manufacturers such as Intel and IBM to build always more sophisticated systems on a single microchip. The classical interconnection solutions based on shared buses or direct connections between the modules of the chip are becoming obsolete as they struggle to sustain the increasing tight bandwidth and latency constraints that these systems demand. The most promising solution for the future chip interconnects are the Networks on Chip (NoC). NoCs are network composed by routers and channels used to inter- connect the different components installed on the single microchip. Examples of advanced processors based on NoC interconnects are the IBM Cell processor, composed by eight CPUs that is installed on the Sony Playstation III and the Intel Teraflops pro ject composed by 80 independent (simple) microprocessors. On chip integration is becoming popular not only in the Chip Multi Processor (CMP) research area but also in the wider and more heterogeneous world of Systems on Chip (SoC). SoC comprehend all the electronic devices that surround us such as cell-phones, smart-phones, house embedded systems, automotive systems, set-top boxes etc... SoC manufacturers such as ST Microelectronics , Samsung, Philips and also Universities such as Bologna University, M.I.T., Berkeley and more are all proposing proprietary frameworks based on NoC interconnects. These frameworks help engineers in the switch of design methodology and speed up the development of new NoC-based systems on chip. In this Thesis we propose an introduction of CMP and SoC interconnection networks. Then focusing on SoC systems we propose: • a detailed analysis based on simulation of the Spidergon NoC, a ST Microelectronics solution for SoC interconnects. The Spidergon NoC differs from many classical solutions inherited from the parallel computing world. Here we propose a detailed analysis of this NoC topology and routing algorithms. Furthermore we propose aEqualized a new routing algorithm designed to optimize the use of the resources of the network while also increasing its performance; • a methodology flow based on modified publicly available tools that combined can be used to design, model and analyze any kind of System on Chip; • a detailed analysis of a ST Microelectronics-proprietary transport-level protocol that the author of this Thesis helped developing; • a simulation-based comprehensive comparison of different network interface designs proposed by the author and the researchers at AST lab, in order to integrate shared-memory and message-passing based components on a single System on Chip; • a powerful and flexible solution to address the time closure exception issue in the design of synchronous Networks on Chip. Our solution is based on relay stations repeaters and allows to reduce the power and area demands of NoC interconnects while also reducing its buffer needs; • a solution to simplify the design of the NoC by also increasing their performance and reducing their power and area consumption. We propose to replace complex and slow virtual channel-based routers with multiple and flexible small Multi Plane ones. This solution allows us to reduce the area and power dissipation of any NoC while also increasing its performance especially when the resources are reduced. This Thesis has been written in collaboration with the Advanced System Technology laboratory in Grenoble France, and the Computer Science Department at Columbia University in the city of New York.
Resumo:
The 5th generation of mobile networking introduces the concept of “Network slicing”, the network will be “sliced” horizontally, each slice will be compliant with different requirements in terms of network parameters such as bandwidth, latency. This technology is built on logical instead of physical resources, relies on virtual network as main concept to retrieve a logical resource. The Network Function Virtualisation provides the concept of logical resources for a virtual network function, enabling the concept virtual network; it relies on the Software Defined Networking as main technology to realize the virtual network as resource, it also define the concept of virtual network infrastructure with all components needed to enable the network slicing requirements. SDN itself uses cloud computing technology to realize the virtual network infrastructure, NFV uses also the virtual computing resources to enable the deployment of virtual network function instead of having custom hardware and software for each network function. The key of network slicing is the differentiation of slice in terms of Quality of Services parameters, which relies on the possibility to enable QoS management in cloud computing environment. The QoS in cloud computing denotes level of performances, reliability and availability offered. QoS is fundamental for cloud users, who expect providers to deliver the advertised quality characteristics, and for cloud providers, who need to find the right tradeoff between QoS levels that has possible to offer and operational costs. While QoS properties has received constant attention before the advent of cloud computing, performance heterogeneity and resource isolation mechanisms of cloud platforms have significantly complicated QoS analysis and deploying, prediction, and assurance. This is prompting several researchers to investigate automated QoS management methods that can leverage the high programmability of hardware and software resources in the cloud.
Resumo:
With research on Wireless Sensor Networks (WSNs) becoming more and more mature in the past five years, researchers from universities all over the world have set up testbeds of wireless sensor networks, in most cases to test and evaluate the real-world behavior of developed WSN protocol mechanisms. Although these testbeds differ heavily in the employed sensor node types and the general architectural set up, they all have similar requirements with respect to management and scheduling functionalities: as every shared resource, a testbed requires a notion of users, resource reservation features, support for reprogramming and reconfiguration of the nodes, provisions to debug and remotely reset sensor nodes in case of node failures, as well as a solution for collecting and storing experimental data. The TARWIS management architecture presented in this paper targets at providing these functionalities independent from node type and node operating system. TARWIS has been designed as a re-usable management solution for research and/or educational oriented research testbeds of wireless sensor networks, relieving researchers intending to deploy a testbed from the burden to implement their own scheduling and testbed management solutions from scratch.
Resumo:
The number of large research networks and programmes engaging in knowledge production for development has grown over the past years. One of these programmes devoted to generating knowledge about and for development is National Centre of Competence in Research (NCCR) North–South, a cross-disciplinary, international development research network funded by the Swiss Agency for Development and Cooperation and the Swiss National Science Foundation. Producing relevant knowledge for development is a core goal of the programme and an important motivation for many of the participating researchers. Over the years, the researchers have made use of various spaces for exchange and instruments for co-production of knowledge by academic and non-academic development actors. In this article we explore the characteristics of co-producing and sharing knowledge in interfaces between development research, policy and NCCR North–South practice. We draw on empirical material of the NCCR North–South programme and its specific programme element of the Partnership Actions. Our goal is to make use of the concept of the interface to reflect critically about the pursued strategies and instruments applied in producing and sharing knowledge for development across boundaries.
Resumo:
Purpose – The purpose of this paper is to present a simulation‐based evaluation method for the comparison of different organizational forms and software support levels in the field of supply chain management (SCM). Design/methodology/approach – Apart from widely known logistic performance indicators, the discrete event simulation model considers explicitly coordination cost as stemming from iterative administration procedures. Findings - The method is applied to an exemplary supply chain configuration considering various parameter settings. Curiously, additional coordination cost does not always result in improved logistic performance. Influence factor variations lead to different organizational recommendations. The results confirm the high importance of (up to now) disregarded dimensions when evaluating SCM concepts and IT tools. Research limitations/implications – The model is based on simplified product and network structures. Future research shall include more complex, real world configurations. Practical implications – The developed method is designed for the identification of improvement potential when SCM software is employed. Coordination schemes based only on ERP systems are valid alternatives in industrial practice because significant investment IT can be avoided. Therefore, the evaluation of these coordination procedures, in particular the cost due to iterations, is of high managerial interest and the method provides a comprehensive tool for strategic IT decision making. Originality/value – Reviewed literature is mostly focused on the benefits of SCM software implementations. However, ERP system based supply chain coordination is still widespread industrial practice but associated coordination cost has not been addressed by researchers.
Resumo:
Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research.
Resumo:
Urban researchers and planners are often interested in understanding how economic activities are distributed in urban regions, what forces influence their special pattern and how urban structure and functions are mutually dependent. In this paper, we want to show how an algorithm for ranking the nodes in a network can be used to understand and visualize certain commercial activities of a city. The first part of the method consists of collecting real information about different types of commercial activities at each location in the urban network of the city of Murcia, Spain. Four clearly differentiated commercial activities are studied, such as restaurants and bars, shops, banks and supermarkets or department stores, but obviously we can study other. The information collected is then quantified by means of a data matrix, which is used as the basis for the implementation of a PageRank algorithm which produces a ranking of all the nodes in the network, according to their significance within it. Finally, we visualize the resulting classification using a colour scale that helps us to represent the business network.
Resumo:
Paediatric emergency research is hampered by a number of barriers that can be overcome by a multicentre approach. In 2004, an Australia and New Zealand-based paediatric emergency research network was formed, the Paediatric Research in Emergency Departments International Collaborative (PREDICT). The founding sites include all major tertiary children’s hospital EDs in Australia and New Zealand and a major mixed ED in Australia. PREDICT aims to provide leadership and infrastructure for multicentre research at the highest standard, facilitate collaboration between institutions, health-care providers and researchers and ultimately improve patient outcome. Initial network-wide projects have been determined. The present article describes the development of the network, its structure and future goals.
Resumo:
The authors propose a new approach to discourse analysis which is based on meta data from social networking behavior of learners who are submerged in a socially constructivist e-learning environment. It is shown that traditional data modeling techniques can be combined with social network analysis - an approach that promises to yield new insights into the largely uncharted domain of network-based discourse analysis. The chapter is treated as a non-technical introduction and is illustrated with real examples, visual representations, and empirical findings. Within the setting of a constructivist statistics course, the chapter provides an illustration of what network-based discourse analysis is about (mainly from a methodological point of view), how it is implemented in practice, and why it is relevant for researchers and educators.
Resumo:
In this paper a Hierarchical Analytical Network Process (HANP) model is demonstrated for evaluating alternative technologies for generating electricity from MSW in India. The technological alternatives and evaluation criteria for the HANP study are characterised by reviewing the literature and consulting experts in the field of waste management. Technologies reviewed in the context of India include landfill, anaerobic digestion, incineration, pelletisation and gasification. To investigate the sensitivity of the result, we examine variations in expert opinions and carry out an Analytical Hierarchy Process (AHP) analysis for comparison. We find that anaerobic digestion is the preferred technology for generating electricity from MSW in India. Gasification is indicated as the preferred technology in an AHP model due to the exclusion of criteria dependencies and in an HANP analysis when placing a high priority on net output and retention time. We conclude that HANP successfully provides a structured framework for recommending which technologies to pursue in India, and the adoption of such tools is critical at a time when key investments in infrastructure are being made. Therefore the presented methodology is thought to have a wider potential for investors, policy makers, researchers and plant developers in India and elsewhere. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Network simulation is an indispensable tool for studying Internet-scale networks due to the heterogeneous structure, immense size and changing properties. It is crucial for network simulators to generate representative traffic, which is necessary for effectively evaluating next-generation network protocols and applications. With network simulation, we can make a distinction between foreground traffic, which is generated by the target applications the researchers intend to study and therefore must be simulated with high fidelity, and background traffic, which represents the network traffic that is generated by other applications and does not require significant accuracy. The background traffic has a significant impact on the foreground traffic, since it competes with the foreground traffic for network resources and therefore can drastically affect the behavior of the applications that produce the foreground traffic. This dissertation aims to provide a solution to meaningfully generate background traffic in three aspects. First is realism. Realistic traffic characterization plays an important role in determining the correct outcome of the simulation studies. This work starts from enhancing an existing fluid background traffic model by removing its two unrealistic assumptions. The improved model can correctly reflect the network conditions in the reverse direction of the data traffic and can reproduce the traffic burstiness observed from measurements. Second is scalability. The trade-off between accuracy and scalability is a constant theme in background traffic modeling. This work presents a fast rate-based TCP (RTCP) traffic model, which originally used analytical models to represent TCP congestion control behavior. This model outperforms other existing traffic models in that it can correctly capture the overall TCP behavior and achieve a speedup of more than two orders of magnitude over the corresponding packet-oriented simulation. Third is network-wide traffic generation. Regardless of how detailed or scalable the models are, they mainly focus on how to generate traffic on one single link, which cannot be extended easily to studies of more complicated network scenarios. This work presents a cluster-based spatio-temporal background traffic generation model that considers spatial and temporal traffic characteristics as well as their correlations. The resulting model can be used effectively for the evaluation work in network studies.
Resumo:
Online Social Network (OSN) services provided by Internet companies bring people together to chat, share the information, and enjoy the information. Meanwhile, huge amounts of data are generated by those services (they can be regarded as the social media ) every day, every hour, even every minute, and every second. Currently, researchers are interested in analyzing the OSN data, extracting interesting patterns from it, and applying those patterns to real-world applications. However, due to the large-scale property of the OSN data, it is difficult to effectively analyze it. This dissertation focuses on applying data mining and information retrieval techniques to mine two key components in the social media data — users and user-generated contents. Specifically, it aims at addressing three problems related to the social media users and contents: (1) how does one organize the users and the contents? (2) how does one summarize the textual contents so that users do not have to go over every post to capture the general idea? (3) how does one identify the influential users in the social media to benefit other applications, e.g., Marketing Campaign? The contribution of this dissertation is briefly summarized as follows. (1) It provides a comprehensive and versatile data mining framework to analyze the users and user-generated contents from the social media. (2) It designs a hierarchical co-clustering algorithm to organize the users and contents. (3) It proposes multi-document summarization methods to extract core information from the social network contents. (4) It introduces three important dimensions of social influence, and a dynamic influence model for identifying influential users.
Resumo:
Online Social Network (OSN) services provided by Internet companies bring people together to chat, share the information, and enjoy the information. Meanwhile, huge amounts of data are generated by those services (they can be regarded as the social media ) every day, every hour, even every minute, and every second. Currently, researchers are interested in analyzing the OSN data, extracting interesting patterns from it, and applying those patterns to real-world applications. However, due to the large-scale property of the OSN data, it is difficult to effectively analyze it. This dissertation focuses on applying data mining and information retrieval techniques to mine two key components in the social media data — users and user-generated contents. Specifically, it aims at addressing three problems related to the social media users and contents: (1) how does one organize the users and the contents? (2) how does one summarize the textual contents so that users do not have to go over every post to capture the general idea? (3) how does one identify the influential users in the social media to benefit other applications, e.g., Marketing Campaign? The contribution of this dissertation is briefly summarized as follows. (1) It provides a comprehensive and versatile data mining framework to analyze the users and user-generated contents from the social media. (2) It designs a hierarchical co-clustering algorithm to organize the users and contents. (3) It proposes multi-document summarization methods to extract core information from the social network contents. (4) It introduces three important dimensions of social influence, and a dynamic influence model for identifying influential users.