886 resultados para Renewable energy. Offshore wind power. LCOE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Edificações

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Natureza Científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Edificações

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The power system of the future will have a hierarchical structure created by layers of system control from via regional high-voltage transmission through to medium and low-voltage distribution. Each level will have generation sources such as large-scale offshore wind, wave, solar thermal, nuclear directly connected to this Supergrid and high levels of embedded generation, connected to the medium-voltage distribution system. It is expected that the fuel portfolio will be dominated by offshore wind in Northern Europe and PV in Southern Europe. The strategies required to manage the coordination of supply-side variability with demand-side variability will include large scale interconnection, demand side management, load aggregation and storage in the concept of the Supergrid combined with the Smart Grid. The design challenge associated with this will not only include control topology, data acquisition, analysis and communications technologies, but also the selection of fuel portfolio at a macro level. This paper quantifies the amount of demand side management, storage and so-called ‘back-up generation’ needed to support an 80% renewable energy portfolio in Europe by 2050.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been an increased use of the Doubly-Fed Induction Machine (DFIM) in ac drive applications in recent times, particularly in the field of renewable energy systems and other high power variable-speed drives. The DFIM is widely regarded as the optimal generation system for both onshore and offshore wind turbines and has also been considered in wave power applications. Wind power generation is the most mature renewable technology. However, wave energy has attracted a large interest recently as the potential for power extraction is very significant. Various wave energy converter (WEC) technologies currently exist with the oscillating water column (OWC) type converter being one of the most advanced. There are fundemental differences in the power profile of the pneumatic power supplied by the OWC WEC and that of a wind turbine and this causes significant challenges in the selection and rating of electrical generators for the OWC devises. The thesis initially aims to provide an accurate per-phase equivalent circuit model of the DFIM by investigating various characterisation testing procedures. Novel testing methodologies based on the series-coupling tests is employed and is found to provide a more accurate representation of the DFIM than the standard IEEE testing methods because the series-coupling tests provide a direct method of determining the equivalent-circuit resistances and inductances of the machine. A second novel method known as the extended short-circuit test is also presented and investigated as an alternative characterisation method. Experimental results on a 1.1 kW DFIM and a 30 kW DFIM utilising the various characterisation procedures are presented in the thesis. The various test methods are analysed and validated through comparison of model predictions and torque-versus-speed curves for each induction machine. Sensitivity analysis is also used as a means of quantifying the effect of experimental error on the results taken from each of the testing procedures and is used to determine the suitability of the test procedures for characterising each of the devices. The series-coupling differential test is demonstrated to be the optimum test. The research then focuses on the OWC WEC and the modelling of this device. A software model is implemented based on data obtained from a scaled prototype device situated at the Irish test site. Test data from the electrical system of the device is analysed and this data is used to develop a performance curve for the air turbine utilised in the WEC. This performance curve was applied in a software model to represent the turbine in the electro-mechanical system and the software results are validated by the measured electrical output data from the prototype test device. Finally, once both the DFIM and OWC WEC power take-off system have been modeled succesfully, an investigation of the application of the DFIM to the OWC WEC model is carried out to determine the electrical machine rating required for the pulsating power derived from OWC WEC device. Thermal analysis of a 30 kW induction machine is carried out using a first-order thermal model. The simulations quantify the limits of operation of the machine and enable thedevelopment of rating requirements for the electrical generation system of the OWC WEC. The thesis can be considered to have three sections. The first section of the thesis contains Chapters 2 and 3 and focuses on the accurate characterisation of the doubly-fed induction machine using various testing procedures. The second section, containing Chapter 4, concentrates on the modelling of the OWC WEC power-takeoff with particular focus on the Wells turbine. Validation of this model is carried out through comparision of simulations and experimental measurements. The third section of the thesis utilises the OWC WEC model from Chapter 4 with a 30 kW induction machine model to determine the optimum device rating for the specified machine. Simulations are carried out to perform thermal analysis of the machine to give a general insight into electrical machine rating for an OWC WEC device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The European Union has set out an ambitious 20% target for renewable energy use by 2020. It is expected that this will be met mainly by wind energy. Looking towards 2050, reductions in greenhouse gas emissions of 80-95% are to be sought. Given the issues securing this target in the transport and agriculture sectors, it may only be possible to achieve this target if the power sector is carbon neutral well in advance of 2050. This has permitted the vast expansion of offshore renewables, wind, wave and tidal energy. Offshore wind has undergone rapid development in recent years however faces significant challenges up to 2020 to ensure commercial viability without the need for government subsidies. Wave energy is still in the very early stages of development so as yet there has been no commercial roll out. As both of these technologies are to face similar challenges in ensuring they are a viable alternative power generation method to fossil fuels, capitalising on the synergies is potentially a significant cost saving initiative. The advent of hybrid solutions in a variety of configurations is the subject of this thesis. A singular wind-wave energy platform embodies all the attributes of a hybrid system, including sharing space, transmission infrastructure, O&M activities and a platform/foundation. This configuration is the subject of this thesis, and it is found that an OWC Array platform with multi-MegaWatt wind turbines is a technically feasible, and potentially an economically feasible solution in the long term. Methods of design and analysis adopted in this thesis include numerical and physical modelling of power performance, structural analysis, fabrication cost modelling, simplified project economic modelling and time domain reliability modelling of a 210MW hybrid farm. The application of these design and analysis methods has resulted in a hybrid solution capable of producing energy at a cost between €0.22/kWh and €0.31/kWh depending on the source of funding for the project. Further optimisation through detailed design is expected to lower this further. This thesis develops new and existing methods of design and analysis of wind and wave energy devices. This streamlines the process of early stage development, while adhering to the widely adopted Concept Development Protocol, to develop a technically and economically feasible, combined wind-wave energy hybrid solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high dependence of Portugal from foreign energy sources (mainly fossil fuels), together with the international commitments assumed by Portugal and the national strategy in terms of energy policy, as well as resources sustainability and climate change issues, inevitably force Portugal to invest in its energetic self-sufficiency. The 20/20/20 Strategy defined by the European Union defines that in 2020 60% of the total electricity consumption must come from renewable energy sources. Wind energy is currently a major source of electricity generation in Portugal, producing about 23% of the national total electricity consumption in 2013. The National Energy Strategy 2020 (ENE2020), which aims to ensure the national compliance of the European Strategy 20/20/20, states that about half of this 60% target will be provided by wind energy. This work aims to implement and optimise a numerical weather prediction model in the simulation and modelling of the wind energy resource in Portugal, both in offshore and onshore areas. The numerical model optimisation consisted in the determination of which initial and boundary conditions and planetary boundary layer physical parameterizations options provide wind power flux (or energy density), wind speed and direction simulations closest to in situ measured wind data. Specifically for offshore areas, it is also intended to evaluate if the numerical model, once optimised, is able to produce power flux, wind speed and direction simulations more consistent with in situ measured data than wind measurements collected by satellites. This work also aims to study and analyse possible impacts that anthropogenic climate changes may have on the future wind energetic resource in Europe. The results show that the ECMWF reanalysis ERA-Interim are those that, among all the forcing databases currently available to drive numerical weather prediction models, allow wind power flux, wind speed and direction simulations more consistent with in situ wind measurements. It was also found that the Pleim-Xiu and ACM2 planetary boundary layer parameterizations are the ones that showed the best performance in terms of wind power flux, wind speed and direction simulations. This model optimisation allowed a significant reduction of the wind power flux, wind speed and direction simulations errors and, specifically for offshore areas, wind power flux, wind speed and direction simulations more consistent with in situ wind measurements than data obtained from satellites, which is a very valuable and interesting achievement. This work also revealed that future anthropogenic climate changes can negatively impact future European wind energy resource, due to tendencies towards a reduction in future wind speeds especially by the end of the current century and under stronger radiative forcing conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increased concern for the impacts of climate change on the environment, along with the growing industry of renewable energy sources, and especially wind power, has made the valuation of environmental services and goods of great significance. Offshore wind energy is being exploited exponentially and its importance for renewable energy generation is increasing. We apply a double-bound dichotomous Contingent Valuation Method analysis in order to both a) estimating the Willingness to Pay (WTP) of Greek residents for green electricity produced by offshore wind farm located between the islands of Tinos and Andros and b) identifying factors behind respondents’ WTP including individual’s behaviour toward environment and individual’s views on climate change and renewable energy. A total of 141 respondents participated in the questionnaire. Results show that the respondents are willing to pay on average 20€ every two months through their electricity bill in return for carbon-free electricity and water saving from the wind farm. Respondents’ environmental consciousness and their perception towards climate change and renewable energy have a positive effect on their WTP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electric vehicles (EVs) have recently gained much popularity as a green alternative to fossil-fuel cars and a feasible solution to reduce air pollution in big cities. The use of EVs can also be extended as a demand response tool to support high penetration of renewable energy (RE) sources in future smart grid. Based on the certainty equivalent adaptive control (CECA) principle and a customer participation program, this paper presents a novel control strategy using optimization technique to coordinate not only the charging but also the discharging of EV batteries to deal with the intermittency in RE production. In addition, customer charging requirements and schedules are incorporated into the optimization algorithm to ensure customer satisfaction, and further improve the control performance. The merits of this scheme are its simplicity, efficiency, robustness and readiness for practical applications. The effectiveness of the proposed control algorithm is demonstrated by computer simulations of a power system with high level of wind energy integration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind power time series usually show complex dynamics mainly due to non-linearities related to the wind physics and the power transformation process in wind farms. This article provides an approach to the incorporation of observed local variables (wind speed and direction) to model some of these effects by means of statistical models. To this end, a benchmarking between two different families of varying-coefficient models (regime-switching and conditional parametric models) is carried out. The case of the offshore wind farm of Horns Rev in Denmark has been considered. The analysis is focused on one-step ahead forecasting and a time series resolution of 10 min. It has been found that the local wind direction contributes to model some features of the prevailing winds, such as the impact of the wind direction on the wind variability, whereas the non-linearities related to the power transformation process can be introduced by considering the local wind speed. In both cases, conditional parametric models showed a better performance than the one achieved by the regime-switching strategy. The results attained reinforce the idea that each explanatory variable allows the modelling of different underlying effects in the dynamics of wind power time series.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A tanulmány arra keresi a választ, hogy a megújuló alapú áramtermelők támogatása csökkentőleg hathat- e a villamos energia nagykereskedelmi és kiskereskedelmi árára. Ez utóbbi tartalmazza a megújulók támogatásának összegét is. Számos elméleti cikk rámutatott arra, hogy nemcsak a nagykereskedelmi árak, hanem a kiskereskedelmi villamosenergia-árak is csökkenhetnek a drágább, megújuló alapú áramtermelők támogatása révén. A tanulmány során egy villamosenergia-piacokat szimuláló modell segítségével modellezi a szerző, hogy a különböző mennyiségű szélerőművi és fotovoltaikus kapacitás támogatása hogyan hat a magyarországi nagykereskedelmi és kiskereskedelmi árakra. _____ Impact of the Hungarian renewable based power generation on electricity price The aim of this paper is to answer the question whether the support of renewable power generation could decrease the wholesale and retail electricity prices. The latter one includes the support of renewables. Several studies point out that not only the wholesale, but the retail electricity prices could decrease when supporting the more expensive, renewable power generation. A model, which simulates the electricity markets, is used in order to analyse the impact of different level of wind and photo voltaic power generator support fee on Hungarian wholesale and retail electricity prices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a study on the implementation of Real-Time Pricing (RTP) based Demand Side Management (DSM) of water pumping at a clean water pumping station in Northern Ireland, with the intention of minimising electricity costs and maximising the usage of electricity from wind generation. A Genetic Algorithm (GA) was used to create pumping schedules based on system constraints and electricity tariff scenarios. Implementation of this method would allow the water network operator to make significant savings on electricity costs while also helping to mitigate the variability of wind generation.