989 resultados para Renal Principal Cells
Resumo:
Coordenadação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Inheritance of a mutant allele of the von Hippel-Lindau tumor suppressor gene predisposes affected individuals to develop renal cysts and clear cell renal cell carcinoma. Von Hippel-Lindau gene inactivation in single renal tubular cells has indirectly been showed by immunohistochemical staining for the hypoxia-inducible factor alpha target gene product carbonic anhydrase IX. In this study we were able to show von Hippel-Lindau gene deletion in carbonic anhydrase IX positive nonneoplastic renal tubular cells, in epithelial cells lining renal cysts and in a clear cell renal cell carcinoma of a von Hippel-Lindau patient. This was carried out by means of laser confocal microscopy and immunohistochemistry in combination with fluorescence in situ hybridization. Carbonic anhydrase IX negative normal renal tubular cells carried no von Hippel-Lindau gene deletion. Furthermore, recent studies have indicated that the von Hippel-Lindau gene product is necessary for the maintenance of primary cilia stability in renal epithelial cells and that disruption of the cilia structure by von Hippel-Lindau gene inactivation induces renal cyst formation. In our study, we show a significant shortening of primary cilia in epithelial cells lining renal cysts, whereas, single tubular cells with a von Hippel-Lindau gene deletion display to a far lesser extent signs of cilia shortening. Our in vivo results support a model in which renal cysts represent precursor lesions for clear cell renal cell carcinoma and arise from single renal tubular epithelial cells owing to von Hippel-Lindau gene deletion.
Resumo:
Both of the sphingosine kinase (SK) subtypes SK-1 and SK-2 catalyze the production of the bioactive lipid molecule sphingosine 1-phosphate (S1P). However, the subtype-specific cellular functions are largely unknown. In this study, we investigated the cellular function of SK-2 in primary mouse renal mesangial cells (mMC) and embryonic fibroblasts (MEF) from wild-type C57BL/6 or SK-2 knockout (SK2ko) mice. We found that SK2ko cells displayed a significantly higher proliferative and migratory activity when compared to wild-type cells, with concomitant increased cellular activities of the classical extracellular signal regulated kinase (ERK) and PI3K/Akt cascades, and of the small G protein RhoA. Furthermore, we detected an upregulation of SK-1 protein and S1P3 receptor mRNA expression in SK-2ko cells. The MEK inhibitor U0126 and the S1P1/3 receptor antagonist VPC23019 blocked the increased migration of SK-2ko cells. Additionally, S1P3ko mesangial cells showed a reduced proliferative behavior and reduced migration rate upon S1P stimulation, suggesting a crucial involvement of the S1P3 receptor. In summary, our data demonstrate that SK-2 exerts suppressive effects on cell growth and migration in renal mesangial cells and fibroblasts, and that therapeutic targeting of SKs for treating proliferative diseases requires subtype-selective inhibitors.
Resumo:
O presente estudo teve como objetivo descrever o desenvolvimento dos sistemas renais de bovinos durante o período embrionário compreendido entre 10 e 50 dias. Embriões bovinos coletados em frigorífico foram fotografados e medidos utilizando-se o método Crow-Rump (CR) para estimar a idade gestacional. Os embriões destinados à miscroscopia óptica foram fixados em solução de Bouin para a avaliação do desenvolvimento do sistema renal, assim como suas estruturas. Alguns embriões também foram fixados em Glutaraldeído 2,5% e destinados à microscopia eletrônica de transmissão para o estudo ultraestrutural das células do sistema renal. Embriões entre o 14° e o 15° dia de desenvolvimento (E14-15) não apresentaram pronefro, mas apresentaram mesonefro, assim como indícios morfológicos que indicam sua atividade funcional. O mesonefro apresentou, no interior de suas células tubulares, inúmeras mitocôndrias e interdigitações, indicando uma alta atividade de transporte iônico. O metanefro, ou rim definitivo, iniciou seu desenvolvimento em E23-24. Os achados emonstram que a involução do mesonefro acontece simultaneamente com a diferenciação metanefrogênica. Em E45-46, já iniciando a fase fetal, o metanefro possuiu unidades filtradoras (néfrons), com seus respectivos glomérulos, túbulos contorcidos proximais e distais e alça de Henle. Nessa fase, o rim ainda não apresenta lobação externa.
Resumo:
Inflammation is currently recognized as a key mechanism in the pathogenesis of renal ischemia-reperfusion (I/R) injury. The importance of infiltrating neutrophil, lymphocytes, and macrophage in this kind of injury has been assessed with conflicting results. Annexin 1 is a protein with potent neutrophil anti-migratory activity. In order to evaluate the effects of annexin A1 on renal I/R injury, uninephrectomized rats received annexin A1 mimetic peptide Ac2-26 (100 mu g) or vehicle before 30 min of renal artery clamping and were compared to sham surgery animals. Annexin A1 mimetic peptide granted a remarkable protection against I/R injury, preventing glomerular filtration rate and urinary osmolality decreases and acute tubular necrosis development. Annexin A1 infusion aborted neutrophil extravasation and attenuated macrophage infiltration but did not prevent tissue lymphocyte traffic. I/R increased annexin A1 expression (assessed by transmission electron microscopy) in renal epithelial cells, which was attenuated by exogenous annexin A1 infusion. Additionally, annexin A1 reduced I/R injury in isolated proximal tubules suspension. Annexin A1 protein afforded striking functional and structural protection against renal I/R. These results point to an important role of annexin A1 in the epithelial cells defense against I/R injury and indicate that neutrophils are key mediators for the development of tissue injury after renal I/R. If these results were confirmed in clinical studies, annexin A1 might emerge as an important tool to protect against I/R injury in renal transplantation and in vascular surgery.
Resumo:
Myosin-Va is a Ca2+/calmodulin-regulated unconventional myosin involved in the transport of vesicles, membranous organelles, and macromolecular complexes composed of proteins and mRNA. The cellular localization of myosin-Va has been described in great detail in several vertebrate cell types, including neurons, melanocytes, lymphocytes, auditory tissues, and a number of cultured cells. Here, we provide an immunohistochemical view of the tissue distribution of myosin-Va in the major endocrine organs. Myosin-Va is highly expressed in the pineal and pituitary glands and in specific cell populations of other endocrine glands, especially the parafollicular cells of the thyroid, the principal cells of the parathyroid, the islets of Langerhans of the pancreas, the chromaffin cells of the adrenal medulla, and a subpopulation of interstitial testicular cells. Weak to moderate staining has been detected in steroidogenic cells of the adrenal cortex, ovary, and Leydig cells. Myosin-Va has also been localized to non-endocrine cells, such as the germ cells of the seminiferous epithelium and maturing oocytes and in the intercalated ducts of the exocrine pancreas. These data provide the first systematic description of myosin-Va localization in the major endocrine organs of rat.
Resumo:
Background. Cisplatin (CP)-induced renal damage is associated with inflammation. Hydrogen sulphide (H(2)S) is involved in models of inflammation. This study evaluates the effect of DL-propargylglycine (PAG), an inhibitor of endogenous H(2)S formation, on the renal damage induced by CP. Methods. The rats were injected with CP (5 mg/kg, i.p.) or PAG(5 mg/kg twice a day, i.p.) for 4 days, starting 1 h before CP injection. Control rats were injected with 0.15 M NaCl or PAG only. Blood and urine samples were collected 5 days after saline or CP injections for renal function evaluation. The kidneys were removed for tumour necrosis factor (TNF)-alpha quantification, histological, immunohistochemical and Western blot analysis. The cystathionine gamma-lyase (CSE) activity and expression were assessed. The direct toxicity of H(2)S in renal tubular cells was evaluated by the incubation of these cells with NaHS, a donor of H(2)S. Results. CP-treated rats presented increases in plasma creatinine levels and in sodium and potassium fractional excretions associated with tubulointerstitial lesions in the outer medulla. Increased expression of TNF-alpha, macrophages, neutrophils and T lymphocytes, associated with increased H(2)S formation rate and CSE expression, were also observed in the outer medulla from CP-injected rats. All these alterations were reduced by treatment with PAG. A direct toxicity of NaHS for renal tubular epithelial cells was not observed. Conclusions. Treatment with PAG reduces the renal damage induced by CP. This effect seems to be related to the H2S formation and the restriction of the inflammation in the kidneys from PAG+CP-treated rats.
Resumo:
Dissertation for obtaining the Master degree in Membrane Engineering
Resumo:
The N-acylethanolamines (NAEs), oleoylethanolamide (OEA) and palmithylethanolamide (PEA) are known to be endogenous ligands of PPARα receptors, and their presence requires the activation of a specific phospholipase D (NAPE-PLD) associated with intracellular Ca(2+) fluxes. Thus, the identification of a specific population of NAPE-PLD/PPARα-containing neurons that express selective Ca(2+)-binding proteins (CaBPs) may provide a neuroanatomical basis to better understand the PPARα system in the brain. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the co-existence of NAPE-PLD/PPARα and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. PPARα expression was specifically localized in the cell nucleus and, occasionally, in the cytoplasm of the principal cells (dentate granular and CA pyramidal cells) and some non-principal cells of the hippocampus. PPARα was expressed in the calbindin-containing cells of the granular cell layer of the dentate gyrus (DG) and the SP of CA1. These principal PPARα(+)/calbindin(+) cells were closely surrounded by NAPE-PLD(+) fiber varicosities. No pyramidal PPARα(+)/calbindin(+) cells were detected in CA3. Most cells containing parvalbumin expressed both NAPE-PLD and PPARα in the principal layers of the DG and CA1/3. A small number of cells containing PPARα and calretinin was found along the hippocampus. Scattered NAPE-PLD(+)/calretinin(+) cells were specifically detected in CA3. NAPE-PLD(+) puncta surrounded the calretinin(+) cells localized in the principal cells of the DG and CA1. The identification of the hippocampal subpopulations of NAPE-PLD/PPARα-containing neurons that express selective CaBPs should be considered when analyzing the role of NAEs/PPARα-signaling system in the regulation of hippocampal functions.
Resumo:
The retrograde suppression of the synaptic transmission by the endocannabinoid sn-2-arachidonoylglycerol (2-AG) is mediated by the cannabinoid CB1 receptors and requires the elevation of intracellular Ca(2+) and the activation of specific 2-AG synthesizing (i.e., DAGLα) enzymes. However, the anatomical organization of the neuronal substrates that express 2-AG/CB1 signaling system-related molecules associated with selective Ca(2+)-binding proteins (CaBPs) is still unknown. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the expression of the 2-AG/CB1 signaling system (CB1 receptor, DAGLα, MAGL, and FAAH) and the CaBPs calbindin D28k, calretinin, and parvalbumin in the rat hippocampus. CB1, DAGLα, and MAGL labeling was mainly localized in fibers and neuropil, which were differentially organized depending on the hippocampal CaBPs-expressing cells. CB(+) 1 fiber terminals localized in all hippocampal principal cell layers were tightly attached to calbindin(+) cells (granular and pyramidal neurons), and calretinin(+) and parvalbumin(+) interneurons. DAGLα neuropil labeling was selectively found surrounding calbindin(+) principal cells in the dentate gyrus and CA1, and in the calretinin(+) and parvalbumin(+) interneurons in the pyramidal cell layers of the CA1/3 fields. MAGL(+) terminals were only observed around CA1 calbindin(+) pyramidal cells, CA1/3 calretinin(+) interneurons and CA3 parvalbumin(+) interneurons localized in the pyramidal cell layers. Interestingly, calbindin(+) pyramidal cells expressed FAAH specifically in the CA1 field. The identification of anatomically related-neuronal substrates that expressed 2-AG/CB1 signaling system and selective CaBPs should be considered when analyzing the cannabinoid signaling associated with hippocampal functions.
Resumo:
The collecting duct of normal kidney exhibits significant activity of the MEK1/2-ERK1/2 pathway as shown in vivo by immunostaining of phosphorylated active ERK1/2 (pERK1/2). The MEK1/2-ERK1/2 pathway controls many different ion transports both in proximal and distal nephron, raising the question of whether this pathway is involved in the basal and/or hormone-dependent transepithelial sodium reabsorption in the principal cell of the cortical collecting duct (CCD), a process mediated by the apical epithelial sodium channel and the basolateral sodium pump (Na,K-ATPase). To answer this question we used ex vivo microdissected CCDs from normal mouse kidney or in vitro cultured mpkCCDcl4 principal cells. Significant basal levels of pERK1/2 were observed ex vivo and in vitro. Aldosterone and vasopressin, known to up-regulate sodium reabsorption in CCDs, did not change ERK1/2 activity either ex vivo or in vitro. Basal and aldosterone- or vasopressin-stimulated sodium transport was down-regulated by the MEK1/2 inhibitor PD98059, in parallel with a decrease in pERK1/2 in vitro. The activity of Na,K-ATPase but not that of epithelial sodium channel was inhibited by MEK1/2 inhibitors in both unstimulated and aldosterone- or vasopressin-stimulated CCDs in vitro. Cell surface biotinylation showed that intrinsic activity rather than cell surface expression of Na,K-ATPase was controlled by pERK1/2. PD98059 also significantly inhibited the activity of Na,K-ATPase ex vivo. Our data demonstrate that the ERK1/2 pathway controls Na,K-ATPase activity and transepithelial sodium transport in the principal cell and indicate that basal constitutive activity of the ERK1/2 pathway is a critical component of this control.
Resumo:
Background: The long-term side-effects of cancer treatments are of growing importance, since the number of pediatric cancer survivors has considerably increased. Renal side-effects should be noted early to prevent further deterioration. Renal dysfunction may also develop long after cancer treatment. Easy and reliable methods for assessing renal function are needed. Aims: The aims were to find the mechanisms behind methotrexate-induced renal damage by studying renal tubular cells (LLC-PK1cells), and to evaluate the usefulness of laboratory tests in assessing glomerular function in pediatric cancer patients by comparing an isotope clearance method with alternative methods. The aim was also to study the long-term effects of bone marrow transplantation (BMT) and high-dose methotrexate (HD-MTX) treatment in renal function. Results: Methotrexate induced time-dependent renal tubular cell swelling and cell death. In patients treated with HD-MTX a significant decrease in GFR was noted after a follow-up time of one to ten years. One year after BMTthe GFR was reduced, especially in patients treated with total body irradiation (TBI). GFR recovered slightly but remained stable thereafter. In glomerular function assessment the serum cystatin C (cysC) concentration showed a significant association with GFR measured by the isotope method. Conclusions: Methotrexate induced acute damage in renal tubular cells. In assessing GFR the isotope method still remains the method of choice, but the assay of cystatin C was the most reliable of other alternatives. Long-term follow-up of renal function is needed in BMT patients and patients treated with HD-MTX.
Resumo:
O objetivo do presente estudo foi avaliar a hemodinâmica renal de cadelas com piometra por meio de exames laboratoriais, ultrassonografia Modo B e Doppler, antes e após o tratamento cirúrgico com ovariosanpigohisterectomia (OSH). Foram utilizadas 30 cadelas com diagnóstico de piometra, todas foram submetidas a OSH (momento 1) e 20 foram reavaliadas sete dias após a cirurgia (momento 2). A perfusão renal, o índice de resistividade da artéria renal principal e de cada artéria interlobar (cranial, média e caudal) foi estatisticamente diferente entre os momentos 1 e 2 (p<0,05). Não foi observada diferença estatística para a perfusão renal entre o rim direito e esquerdo no momento 1 e 2. As correlações entre o índice de resistividade da artéria renal principal e as variáveis utilizadas para verificar a função renal foram estabelecidas no momento 1. Para as variáveis correlacionadas ureia, creatinina, proteinúria, relação GGT/creatinina e proteína/creatinina ocorreram associações curvilíneas e positivas com o índice de resistividade da artéria renal principal (p<0,05), no entanto essas correlações foram consideradas de média e fracas. Ao comparar o IR da artéria renal principal com diferentes escores de desidratação e perfusão renal, este foi estatisticamente diferente, e demonstrou aumento da resistência renal em cadelas com moderada redução da perfusão renal, assim como em cadelas desidratadas. Foram avaliadas diversas características de morfologia renal na ultrassonografia Modo B, no entanto, somente as variáveis presença de dilatação de pelve, sinal da medular e outras alterações como áreas de infartos e pontos hiperecogênicos difusos na cortical e medular renal foram estatisticamente distintas de um momento para o outro, com maior frequência no momento 2. Os resultados do presente trabalho demonstram que a ultrassonografia Doppler pode identificar alterações de redução na perfusão renal, por meio do Doppler colorido e o aumento do índice de resistividade das artérias renais em cadelas com piometra. Assim como, a ultrassonografia modo B, embora apresente alterações inespecíficas, pode detectar alterações renais progressivas em cadelas com piometra.
Resumo:
Calcium oxalate (CaOx) crystals adhere to and are internalized by tubular renal cells and it seems that this interaction is related (positively or negatively) to the appearance of urinary calculi. The present study analyzes a series of mechanisms possibly involved in CaOx uptake by Madin-Darby canine kidney (MDCK) cells. CaOx crystals were added to MDCK cell cultures and endocytosis was evaluated by polarized light microscopy. This process was inhibited by an increase in intracellular calcium by means of ionomycin (100 nM; N = 6; 43.9% inhibition; P<0.001) or thapsigargin (1 µM; N = 6; 33.3% inhibition; P<0.005) administration, and via blockade of cytoskeleton assembly by the addition of colchicine (10 µM; N = 8; 46.1% inhibition; P<0.001) or cytochalasin B (10 µM; N = 8; 34.2% inhibition; P<0.001). Furthermore, CaOx uptake was reduced when the activity of protein kinase C was inhibited by staurosporine (10 nM; N = 6; 44% inhibition; P<0.01), or that of cyclo-oxygenase by indomethacin (3 µM; N = 12; 17.2% inhibition; P<0.05); however, the uptake was unaffected by modulation of potassium channel activity with glibenclamide (3 µM; N = 6), tetraethylammonium (1 mM; N = 6) or cromakalim (1 µM; N = 6). Taken together, these data indicate that the process of CaOx internalization by renal tubular cells is similar to the endocytosis reported for other systems. These findings may be relevant to cellular phenomena involved in early stages of the formation of renal stones.
Resumo:
The aim of the present study was to evaluate the acidification of the endosome-lysosome system of renal epithelial cells after endocytosis of two human immunoglobulin lambda light chains (Bence-Jones proteins, BJP) obtained from patients with multiple myeloma. Renal epithelial cell handling of two BJP (neutral and acidic BJP) was evaluated by rhodamine fluorescence. Renal cells (MDCK) were maintained in culture and, when confluent, were incubated with rhodamine-labeled BJP for different periods of time. Photos were obtained with a fluorescence microscope (Axiolab-Zeiss). Labeling density was determined on slides with a densitometer (Shimadzu Dual-Wavelength Flying-Spot Scanner CS9000). Endocytosis of neutral and acidic BJP was correlated with acidic intracellular compartment distribution using acridine orange labeling. We compared the pattern of distribution after incubation of native neutral and acidic BJP and after complete deglycosylation of BJP by periodate oxidation. The subsequent alteration of pI converted neutral BJP to acidic BJP. There was a significant accumulation of neutral BJP in endocytic structures, reduced lysosomal acidification, and a diffuse pattern of acidification. This pattern was reversed after total deglycosylation and subsequent alteration of the pI to an acidic BJP. We conclude that the physicochemical characteristics of BJP interfere with intracellular acidification, possibly explaining the strong nephrotoxicity of neutral BJP. Lysosomal acidification is fundamental for adequate protein processing and catabolism.