966 resultados para Reinforced Concrete Buildings
Resumo:
Tese de Doutoramento em Engenharia Civil
Resumo:
A novel framework for probabilistic-based structural assessment of existing structures, which combines model identification and reliability assessment procedures, considering in an objective way different sources of uncertainty, is presented in this paper. A short description of structural assessment applications, provided in literature, is initially given. Then, the developed model identification procedure, supported in a robust optimization algorithm, is presented. Special attention is given to both experimental and numerical errors, to be considered in this algorithm convergence criterion. An updated numerical model is obtained from this process. The reliability assessment procedure, which considers a probabilistic model for the structure in analysis, is then introduced, incorporating the results of the model identification procedure. The developed model is then updated, as new data is acquired, through a Bayesian inference algorithm, explicitly addressing statistical uncertainty. Finally, the developed framework is validated with a set of reinforced concrete beams, which were loaded up to failure in laboratory.
Resumo:
There is an increased interest in constructing Pre-Cast (PC) Twin and Triple Reinforced Concrete Box (RCB) culverts in Iowa due to the efficiency associated with their production in controlled environment and decrease of the construction time at the culvert sites. The design of the multi-barrel PC culverts is, however, based on guidelines for single-barrel cast-inplace (CIP) culverts despite that the PC and CIP culverts have different geometry. There is scarce information for multiplebarrel RCB culverts in general and even fewer on culverts with straight wingwalls as those designed by Iowa DOT. Overall, the transition from CIP to PC culverts requires additional information for improving the design specifications currently in use. Motivated by the need to fill these gaps, an experimental study was undertaken by IIHR-Hydroscience & Engineering. The goals of the study are to document flow performance curves and head losses at the culvert entrance for a various culvert geometry, flow conditions, and settings. The tests included single-, double- and triple-barrel PC and CIP culverts with two span-to-rise ratios set on mild and steep slopes. The tests also included optimization of the culvert geometry entrance by considering various configurations for the top bevel. The overall conclusion of the study is that by and large the current Iowa DOT design specifications for CIP culverts can be used for multi-barrel PC culvert design. For unsubmerged flow conditions the difference in the hydraulic performance curves and headloss coefficients for PC and CIP culverts are within the experimental uncertainty. Larger differences (specified by the study) are found for submerged conditions when the flow is increasingly constricted at the entrance in the culvert. The observed differentiation is less important for multi-barrel culverts as the influence of the wingwalls decreases with the increase of the number of barrels.
Resumo:
The objective of this research project was to service load test a representative sample of old reinforced concrete bridges (some of them historic and some of them scheduled for demolition) with the results being used to create a database so the performance of similar bridges could be predicted. The types of bridges tested included two reinforced concrete open spandrel arches, two reinforced concrete filled spandrel arches, one reinforced concrete slab bridge, and one two span reinforced concrete stringer bridge. The testing of each bridge consisted of applying a static load at various locations on the bridges and monitoring strains and deflections in critical members. The load was applied by means of a tandem axle dump truck with varying magnitudes of load. At each load increment, the truck was stopped at predetermined transverse and longitudinal locations and strain and deflection data were obtained. The strain data obtained were then evaluated in relation to the strain values predicted by traditional analytical procedures and a carrying capacity of the bridges was determined based on the experimental data. The response of a majority of the bridges tested was considerably lower than that predicted by analysis. Thus, the safe load carrying capacities of the bridges were greater than those predicted by the analytical models, and in a few cases, the load carrying capacities were found to be three or four times greater than calculated values. However, the test results of one bridge were lower than those predicted by analysis and thus resulted in the analytical rating being reduced. The results of the testing verified that traditional analytical methods, in most instances, are conservative and that the safe load carrying capacities of a majority of the reinforced concrete bridges are considerably greater than what one would determine on the basis of analytical analysis alone. In extrapolating the results obtained from diagnostic load tests to levels greater than those placed on the bridge during the load test, care must be taken to ensure safe bridge performance at the higher load levels. To extrapolate the load test results from the bridges tested in this investigation, the method developed by Lichtenstein in NCHRP Project 12-28(13)A was used.
Resumo:
The Iowa Department of Transportation initiated this research to evaluate the reliability, benefit and application of the corrosion detection device. Through field testing prior to repair projects and inspection at the time of repair, the device was shown to be reliable. With the reliability established, twelve additional devices were purchased so that this evaluation procedure could be used routinely on all repair projects. The corrosion detection device was established as a means for determining concrete removal for repair. Removal of the concrete down to the top reinforcing steel is required for all areas exhibiting electrical potentials greater than 0.45 Volt. It was determined that the corrosion detection device was not applicable to membrane testing. The corrosion detection device has been used to evaluate corrosion of reinforcing steel in continuously reinforced concrete pavement.
Resumo:
The influence of chloride deposition rate on concrete using an atmospheric corrosion approach is rarely studied in the literature. Seven exposure sites were selected in Havana City, Cuba, for exposure of reinforced concrete samples. Two significantly different atmospheric corrosivity levels with respect to corrosion of steel reinforced concrete were observed after two years of exposure depending on atmospheric chloride deposition and w/c ratio of the concrete. Changes in corrosion current are related to changes in chloride penetration and chloride atmospheric deposition. The influence of sulphur compound deposition could also be a parameter to consider in atmospheric corrosion of steel reinforced concrete.
Resumo:
This paper presents the results from an experimental program and an analytical assessment of the influence of addition of fibers on mechanical properties of concrete. Models derived based on the regression analysis of 60 test data for various mechanical properties of steel fiber-reinforced concrete have been presented. The various strength properties studied are cube and cylinder compressive strength, split tensile strength, modulus of rupture and postcracking performance, modulus of elasticity, Poisson’s ratio, and strain corresponding to peak compressive stress. The variables considered are grade of concrete, namely, normal strength 35 MPa , moderately high strength 65 MPa , and high-strength concrete 85 MPa , and the volume fraction of the fiber Vf =0.0, 0.5, 1.0, and 1.5% . The strength of steel fiber-reinforced concrete predicted using the proposed models have been compared with the test data from the present study and with various other test data reported in the literature. The proposed model predicted the test data quite accurately. The study indicates that the fiber matrix interaction contributes significantly to enhancement of mechanical properties caused by the introduction of fibers, which is at variance with both existing models and formulations based on the law of mixtures
Resumo:
El uso de materiales compuestos de matriz polimérica (FRP) emerge como alternativa al hormigón convencionalmente armado con acero debido a la mayor resistencia a la corrosión de dichos materiales. El presente estudio investiga el comportamiento en servicio de vigas de hormigón armadas con barras de FRP mediante un análisis teórico y experimental. Se presentan los resultados experimentales de veintiséis vigas de hormigón armadas con barras de material compuesto de fibra de vidrio (GFRP) y una armada con acero, todas ellas ensayadas a flexión de cuatro puntos. Los resultados experimentales son analizados y comparados con algunos de los modelos de predicción más significativos de flechas y fisuración, observándose, en general, una predicción adecuada del comportamiento experimental hasta cargas de servicio. El análisis de sección fisurada (CSA) estima la carga última con precisión, aunque se registra un incremento de la flecha experimental para cargas superiores a las de servicio. Esta diferencia se atribuye a la influencia de las deformaciones por esfuerzo cortante y se calcula experimentalmente. Se presentan los aspectos principales que influyen en los estados límites de servicio: tensiones de los materiales, ancho máximo de fisura y flecha máxima permitida. Se presenta una metodología para el diseño de dichos elementos bajo las condiciones de servicio. El procedimiento presentado permite optimizar las dimensiones de la sección respecto a metodologías más generales.
Resumo:
Os modelos de bielas e tirantes são procedimentos de análise apropriados para projetar elementos de concreto armado em casos de regiões onde há alterações geométricas ou concentrações de tensões, denominadas regiões D. Trata-se de bons modelos de representação da estrutura para avaliar melhor o seu comportamento estrutural e seu mecanismo resistente. O presente artigo aplica a técnica da otimização topológica para identificar o fluxo de tensões nas estruturas, definindo a configuração dos membros de bielas e tirantes, e quantifica seus valores para dimensionamento. Utilizam-se o método ESO, e uma variante desse, o SESO (Smoothing ESO) com o método dos elementos finitos em elasticidade plana. A filosofia do SESO baseia-se na observação de que se o elemento não for necessário à estrutura, sua contribuição de rigidez vai diminuindo progressivamente. Isto é, sua remoção é atenuada nos valores da matriz constitutiva, como se este estivesse em processo de danificação. Para validar a presente formulação, apresentam-se alguns exemplos numéricos onde se comparam suas respostas com as advindas de trabalhos científicos pioneiros sobre o assunto.
Resumo:
The paper presents a new methodology to model material failure, in two-dimensional reinforced concrete members, using the Continuum Strong Discontinuity Approach (CSDA). The mixture theory is used as the methodological approach to model reinforced concrete as a composite material, constituted by a plain concrete matrix reinforced with two embedded orthogonal long fiber bundles (rebars). Matrix failure is modeled on the basis of a continuum damage model, equipped with strain softening, whereas the rebars effects are modeled by means of phenomenological constitutive models devised to reproduce the axial non-linear behavior, as well as the bondslip and dowel effects. The proposed methodology extends the fundamental ingredients of the standard Strong Discontinuity Approach, and the embedded discontinuity finite element formulations, in homogeneous materials, to matrix/fiber composite materials, as reinforced concrete. The specific aspects of the material failure modeling for those composites are also addressed. A number of available experimental tests are reproduced in order to illustrate the feasibility of the proposed methodology. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work is about the 21st century reinforced concrete analysis under the point of view of its constituent materials. First of all it is described the theoretical approach of the bending elements calculated based on the Norms BAEL 91 standarts. After that, numerical load-displacement are presented from reinforced concrete beams and plates validated by experimental data. The numerical modellings has been carried on in the program CASTEM 2000. In this program a elastoplastic model of Drucker-Prager defines the rupture surface of the concrete in non associative plasticity. The crack is smeared on the Gauss points of the finite elements with formation criterion starting from the definition of the rupture surface in the branch traction-traction of the Rankine model. The reinforcements were modeled in a discrete approach with perfect bond. Finally, a comparative analysis is made between the numerical results and calculated criteria showing the future of high performance reinforced concrete in this beginning of 21st century.
Resumo:
The objective of this paper is the numerical study of the behavior of reinforced concrete beams and columns by non-linear numerical simulations. The numerical analysis is based on the finite element method implemented in CASTEM 2000. This program uses the constitutive elastoplastic perfect model for the steel, the Drucker-Prager model for the concrete and the Newton-Raphson for the solution of non-linear systems. This work concentrates on the determination of equilibrium curves to the beams and force-strain curves to the columns. The numeric responses are confronted with experimental results found in the literature in order to check there liability of the numerical analyses.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The search for an adequate destination to the tires without use is a problem for many countries. The use of tire rubber in concrete through the partial substitution of the small aggregate has for objective the withdrawal of this material of the environment besides serving as alternative material in places that present sand scarcity. However, to use this type of concrete in civil construction it's necessary to verify its structural behavior. The behavior of the adherence enters the bar of armor and the concrete surrounding it has decisive importance with relation to the load capacity of the structures of reinforced concrete. In this context, this work presents, argues and evaluates the results of the experimental studies for determination of the adherence tension according to pulling up assays pull-out normalized for CEB RC6 and also related in the ASTM C-234 in concrete with and without rubber residues. Armors of nominal diameter of 10,0; 12,5 and 16 mm had been used and concrete contend 10% of rubber fibres in substitution to the sand in volume.
Resumo:
This paper presents an experimental research on the use of eddy current testing (ECT) and artificial neural networks (ANNs) in order to identify the gauge and position of steel bars immersed in concrete structures. The paper presents details of the ECT probe and concrete specimens constructed for the tests, and a study about the influence of the concrete on the values of measured voltages. After this, new measurements were done with a greater number of specimens, simulating a field condition and the results were used to generate training and validation vectors for multilayer perceptron ANNs. The results show a high percentage of correct identification with respect to both, the gauge of the bar and of the thickness of the concrete cover. © 2013 Copyright Taylor and Francis Group, LLC.