961 resultados para Regime of Historicity
Resumo:
Several modern-day cooling applications require the incorporation of mini/micro-channel shear-driven flow condensers. There are several design challenges that need to be overcome in order to meet those requirements. The difficulty in developing effective design tools for shear-driven flow condensers is exacerbated due to the lack of a bridge between the physics-based modelling of condensing flows and the current, popular approach based on semi-empirical heat transfer correlations. One of the primary contributors of this disconnect is a lack of understanding caused by the fact that typical heat transfer correlations eliminate the dependence of the heat transfer coefficient on the method of cooling employed on the condenser surface when it may very well not be the case. This is in direct contrast to direct physics-based modeling approaches where the thermal boundary conditions have a direct and huge impact on the heat transfer coefficient values. Typical heat transfer correlations instead introduce vapor quality as one of the variables on which the value of the heat transfer coefficient depends. This study shows how, under certain conditions, a heat transfer correlation from direct physics-based modeling can be equivalent to typical engineering heat transfer correlations without making the same apriori assumptions. Another huge factor that raises doubts on the validity of the heat-transfer correlations is the opacity associated with the application of flow regime maps for internal condensing flows. It is well known that flow regimes influence heat transfer rates strongly. However, several heat transfer correlations ignore flow regimes entirely and present a single heat transfer correlation for all flow regimes. This is believed to be inaccurate since one would expect significant differences in the heat transfer correlations for different flow regimes. Several other studies present a heat transfer correlation for a particular flow regime - however, they ignore the method by which extents of the flow regime is established. This thesis provides a definitive answer (in the context of stratified/annular flows) to: (i) whether a heat transfer correlation can always be independent of the thermal boundary condition and represented as a function of vapor quality, and (ii) whether a heat transfer correlation can be independently obtained for a flow regime without knowing the flow regime boundary (even if the flow regime boundary is represented through a separate and independent correlation). To obtain the results required to arrive at an answer to these questions, this study uses two numerical simulation tools - the approximate but highly efficient Quasi-1D simulation tool and the exact but more expensive 2D Steady Simulation tool. Using these tools and the approximate values of flow regime transitions, a deeper understanding of the current state of knowledge in flow regime maps and heat transfer correlations in shear-driven internal condensing flows is obtained. The ideas presented here can be extended for other flow regimes of shear-driven flows as well. Analogous correlations can also be obtained for internal condensers in the gravity-driven and mixed-driven configuration.
Resumo:
This thesis questions the major esthetic differences between the artistic productions of the Second Spanish Republic (1931-1939) and the nationalist artistic productions of the Civil War years and the first decade of the francoist dictatorship. These differences are analysed using the artistic productions of Josep Renau (1907 Valence – 1982 Berlin East) and of Ignacio Zuloaga (Elibar 1870 – Madrid 1945). Renau was an important artistic figure during the Spanich Republic. In this thesis, we analyse Renau’s different propaganda productions between 1931 and 1939. Zuloaga was an international artist when the nationalist uprising occurred in 1936. He was recognized by the European elites for his portraits of Andalousian and Castillian sceneries. Zuloaga supported the nationalist putsch and the francoist ideology. In 1939, the Caudillo ordered the painting of the portrait that we will be analysing. The theories of François Hartog, Reinhart Koselleck, Paul Ricoeur and Hannah Arendt are used to analyse the historical conceptual confrontation in Spain, portrayed by the artworks that we studied. During the Republic, it was the modern historical regime that was in force. The historical references used are close in time and the history is constructed in the future and attached to the idea of progress. With the nationalists, the historical conception is connected to the Historia magistra where the past is used as an example. In the first francoism, a return to Spain’s glorious past (the Middle Ages, the Golden Century and the Counter Reform) is clearly claimed in order to rescue the country from the ills of modernity. It is with these different historical conceptions in mind that we compare the esthetics specificities of the artworks, the identity and historical references and the mediums used to legitimize the power and the political actions of each front.
Resumo:
We investigate the effect of distinct bonding energies on the onset of criticality of low functionality fluid mixtures. We focus on mixtures ofparticles with two and three patches as this includes the mixture where "empty" fluids were originally reported. In addition to the number of patches, thespecies differ in the type of patches or bonding sites. For simplicity, we consider that the patches on each species are identical: one species has threepatches of type A and the other has two patches of type B. We have found a rich phase behavior with closed miscibility gaps, liquid-liquid demixing, and negative azeotropes. Liquid-liquid demixing was found to pre-empt the "empty" fluid regime, of these mixtures, when the AB bonds are weaker than the AA or BB bonds. By contrast, mixtures in this class exhibit "empty" fluid behavior when the AB bonds are stronger than at least one of the other two. Mixtureswith bonding energies epsilon(BB) = epsilon(AB) and epsilon(AA) < epsilon(BB), were found to exhibit an unusual negative azeotrope. (C) 2011 American Institute of Physics. [doi:10.1063/1.3561396]
Resumo:
Building and sustaining competitive advantage through the creation of market imperfections is challenging in a constantly changing business environment - particularly since the sources of such advantages are increasingly knowledge-based. Facilitated by improved networks and communication, knowledge spills over to competitors more easily than before,thus creating an appropriability problem: the inability of an innovating firm to utilize its innovations commercially. Consequently, as the importance of intellectual assets increases, their protection also calls for new approaches. Companies have various means of protection at their disposal, and by taking advantage of them they can make intangibles more non-transferable and prevent, or at leastdelay, imitation of their most crucial intellectual assets. However, creating barriers against imitation has another side to it, and the transfer of knowledge in situations requiring knowledge sharing may be unintentionally obstructed. Theaim of this thesis is to increase understanding of how firms can balance knowledge protection and sharing so as to benefit most from their knowledge assets. Thus, knowledge protection is approached through an examination of the appropriability regime of a firm, i.e., the combination of available and effective means ofprotecting innovations, their profitability, and the increased rents due to R&D. A further aim is to provide a broader understanding of the formation and structure of the appropriability regime. The study consists of two parts. The first part introduces the research topic and the overall results of the study, and the second part consists of six complementary research publications covering various appropriability issues. The thesis contributes to the existing literature in several ways. Although there is a wide range of prior research on appropriability issues, a lot of it is restricted either to the study of individual appropriability mechanisms, or to comparing certain features of them. These approaches are combined, and the relevant theoretical concepts are clarified and developed. In addition, the thesis provides empirical evidence of the formation of the appropriability regime, which is consequently presented as an adaptive process. Thus, a framework is provided that better corresponds to the complex reality of the current business environment.
Resumo:
The gradualist approach to trade liberalization views the uniform tariffs implied by MFN status as an important step on the path to free trade. We investigate whether a regime of uniform tariffs will be preferable to discriminatory tariffs when countries engage in non-cooperative interaction in multilateral trade. The analysis includes product differentiation and asymmetric costs. We show that with the cost asymmetry the countries will disagree on the choice of tariff regime. When the choice of import tariffs and export subsidies is made sequentially the uniform tariff regime may not be sustainable, because of an incentive to deviate to a discriminatory regime. Hence, an international body is needed to ensure compliance with tariff agreement.
Resumo:
Objective: The aim of the present in vitro study was to evaluate, using two different methodologies, the effectiveness of pulsed Nd:YAG laser irradiation associated with topical acidulated phosphate fluoride (APF) for preventing enamel erosion and structure loss under regimes of erosion and abrasion or erosion only. Background Data: An increased incidence of noncarious lesions (erosion and abrasion) has been observed, consequently new preventative therapies have been proposed. Materials and Methods: Two different methodologies were performed. For the first, 100 bovine crowns were submitted to four different treatments (n = 25): no treatment (control), 4 min application of APF, Nd:YAG laser irradiation (1 W, 100 mJ, 10 Hz, 141.5 J/cm(2)), and Nd:YAG laser irradiation+4 min of APF. After the specimens were exposed to citric acid (2% w/v; 30 min), they were submitted to 5000 brushing cycles. Specimen mass was measured before and after the treatments. For the second methodology, 20 human crowns were embedded in acrylic resin and cut surfaces were exposed and polished. The specimens were divided into four groups (n = 10): no treatment (control), APF for 4 min, Nd:YAG laser irradiation (1 W, 100 mJ, 10 Hz, 125 J/cm(2)), and Nd:YAG laser irradiation+APF. The samples were then immersed in citric acid (2% w/v; 90 min). Vickers hardness was obtained before and after the treatments. Results: The Nd:YAG laser irradiation+APF (bovine and human enamel) was more effective and yielded statistically significant results for surface microhardness and enamel wear. Conclusion: Nd:YAG laser irradiation associated with APF reduced bovine enamel wear and human enamel softening when samples were submitted to a regime of erosion and abrasion or erosion only in vitro.
Resumo:
In a quantum critical chain, the scaling regime of the energy and momentum of the ground state and low-lying excitations are described by conformal field theory (CFT). The same holds true for the von Neumann and Renyi entropies of the ground state, which display a universal logarithmic behavior depending on the central charge. In this Letter we generalize this result to those excited states of the chain that correspond to primary fields in CFT. It is shown that the nth Renyi entropy is related to a 2n-point correlator of primary fields. We verify this statement for the critical XX and XXZ chains. This result uncovers a new link between quantum information theory and CFT.
Resumo:
This study investigates the feasibility of an anaerobic bioreactor for treating low contents of organic matter to generate organic acids and hydrogen. The device employed for this purpose was a horizontal packed-bed bioreactor fed with glucose-based synthetic wastewater and operated with hydraulic retention times from 0.5 to 2 h. A microbial biofilm was developed without previous inoculation, using expanded clay beads (4.8-6.3 mm) as support material. Alkalinity was found to be the main parameter affecting the production of hydrogen and organic acids, and the system produced optimal output when operating without a buffer agent. The average hydrogen production was 2.48, 2.15 and 1.81 molH(2) mol(-1) of glucose for NaHCO3 influent concentrations of 0, 1000 and 2000 mg L-1, respectively. The operational regime of the bioreactor, the support material and the controlled alkalinity were effective in selecting and immobilizing microbial fermenting biofilms, which successfully produced hydrogen and organic acids throughout the operating period. Exploratory assays indicated the feasibility of organic acid extraction using an anionic polymeric resin. (C) 2007 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
We study the spreading of contagious diseases in a population of constant size using susceptible-infective-recovered (SIR) models described in terms of ordinary differential equations (ODEs) and probabilistic cellular automata (PCA). In the PCA model, each individual (represented by a cell in the lattice) is mainly locally connected to others. We investigate how the topological properties of the random network representing contacts among individuals influence the transient behavior and the permanent regime of the epidemiological system described by ODE and PCA. Our main conclusions are: (1) the basic reproduction number (commonly called R(0)) related to a disease propagation in a population cannot be uniquely determined from some features of transient behavior of the infective group; (2) R(0) cannot be associated to a unique combination of clustering coefficient and average shortest path length characterizing the contact network. We discuss how these results can embarrass the specification of control strategies for combating disease propagations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We describe the classical two-dimensional nonlinear dynamics of cold atoms in far-off-resonant donut beams. We show that chaotic dynamics exists there for charge greater than unity, when the intensity of the beam is periodically modulated. The two-dimensional distributions of atoms in the (x,y) plant for charge 2 are simulated. We show that the atoms will accumulate on several ring regions when the system enters a regime of global chaos. [S1063-651X(99)03903-3].
Resumo:
We study the spin-1/2 Heisenberg models on an anisotropic two-dimensional lattice which interpolates between the square lattice at one end, a set of decoupled spin chains on the other end, and the triangular-lattice Heisenberg model in between. By series expansions around two different dimer ground states and around various commensurate and incommensurate magnetically ordered states, we establish the phase diagram for this model of a frustrated antiferromagnet. We find a particularly rich phase diagram due to the interplay of magnetic frustration, quantum fluctuations, and varying dimensionality. There is a large region of the usual two-sublattice Neel phase, a three-sublattice phase for the triangular-lattice model, a region of incommensurate magnetic order around the triangular-lattice model, and regions in parameter space where there is no magnetic order. We find that the incommensurate ordering wave vector is in general altered from its classical value by quantum fluctuations. The regime of weakly coupled chains is particularly interesting and appears to be nearly critical. [S0163-1829(99)10421-1].
Resumo:
Using the coupled-system approach we calculate the optical spectra of the fluorescence and transmitted fields of a two-level atom driven by a squeezed vacuum of bandwidths smaller than the natural atomic linewidth. We find that in this regime of squeezing bandwidths the spectra exhibit unique features, such as a hole burning and a three-peak structure, which do not appear for a broadband excitation. We show that the features are unique to the quantum nature of the driving squeezed vacuum field and donor appear when the atom is driven by a classically squeezed field. We find that a quantum squeezed-vacuum field produces squeezing in the emitted fluorescence field which appears only in the squeezing spectrum while there is no squeezing in the total field. We also discuss a nonresonant excitation and find that depending on the squeezing bandwidth there is a peak or a hole in the spectrum at a frequency corresponding to a three-wave-mixing process. The hole appears only for a broadband excitation and results from the strong correlations between squeezed-vacuum photons.
Resumo:
We describe the classical and quantum two-dimensional nonlinear dynamics of large blue-detuned evanescent-wave guiding cold atoms in hollow fiber. We show that chaotic dynamics exists for classic dynamics, when the intensity of the beam is periodically modulated. The two-dimensional distributions of atoms in (x,y) plane are simulated. We show that the atoms will accumulate on several annular regions when the system enters a regime of global chaos. Our simulation shows that, when the atomic flux is very small, a similar distribution will be obtained if we detect the atomic distribution once each the modulation period and integrate the signals. For quantum dynamics, quantum collapses, and revivals appear. For periodically modulated optical potential, the variance of atomic position will be suppressed compared to the no modulation case. The atomic angular momentum will influence the evolution of wave function in two-dimensional quantum system of hollow fiber.
Resumo:
We present the finite element simulations of reactive mineral carrying fluids mixing and mineralization in pore-fluid saturated hydrothermal/sedimentary basins. In particular we explore the mixing of reactive sulfide and sulfate fluids and the relevant patterns of mineralization for Load, zinc and iron minerals in the regime of temperature-gradient-driven convective flow. Since the mineralization and ore body formation may last quite a long period of time in a hydrothermal basin, it is commonly assumed that, in the geochemistry, the solutions of minerals are in an equilibrium state or near an equilibrium state. Therefore, the mineralization rate of a particular kind of mineral can be expressed as the product of the pore-fluid velocity and the equilibrium concentration of this particular kind of mineral Using the present mineralization rate of a mineral, the potential of the modern mineralization theory is illustrated by means of finite element studies related to reactive mineral-carrying fluids mixing problems in materially homogeneous and inhomogeneous porous rock basins.
Resumo:
The dynamics of mechanical milling in a vibratory mill have been studied by means of mechanical vibration, shock measurements, computer simulation and microstructural evolution measurements. Two distinct modes of ball motion during milling, periodic and chaotic vibration, were observed. Mill operation in the regime of periodic vibration, in which each collision provides a constant energy input to milled powders, enabled a quantitative description of the effect of process parameters on system dynamics. An investigation of the effect of process parameters on microstructural development in an austenitic stainless steel showed that the impact force associated with collision events is an important process parameter for characterizing microstructural evolution. (C) 1997 Elsevier Science S.A.