644 resultados para Refraction.
Resumo:
We present an experimental demonstration of phase conjugation using nonlinear metamaterial elements. Active split-ring resonators loaded with varactor diodes are demonstrated theoretically to act as phase-conjugating or time-reversing discrete elements when parametrically pumped and illuminated with appropriate frequencies. The metamaterial elements were fabricated and shown experimentally to produce a time-reversed signal. Measurements confirm that a discrete array of phase-conjugating elements act as a negatively refracting time-reversal rf lens only 0.12λ thick.
Resumo:
We investigate the nonlinear propagation of electromagnetic waves in left-handed materials. For this purpose, we consider a set of coupled nonlinear Schrodinger (CNLS) equations, which govern the dynamics of coupled electric and magnetic field envelopes. The CNLS equations are used to obtain a nonlinear dispersion, which depicts the modulational stability profile of the coupled plane-wave solutions in left-handed materials. An exact (in)stability criterion for modulational interactions is derived, and analytical expressions for the instability growth rate are obtained.
Resumo:
A quantitative study of refractive whole beam defocusing and small scale breakup induced by optical ionization of subpicosecond and picosecond, 0.25 and 1 mu m, laser pulses in gas-jet targets at densities above 1 x 10(19) cm(-3) has been carried out. A significant reduction of the incident laser intensity was observed due to refraction from ionization-induced density gradients. The level of refraction measured with optical probing correlated well with the fraction of energy transmitted through the plasma. The numerical and analytical models were found to agree well with experimental observations.
Resumo:
A significant portion of the UK’s transportation system relies on a network of geotechnical earthworks (cuttings and embankments) that were constructed more than 100 years ago, whose stability is affected by the change in precipitation patterns experienced over the past few decades. The vulnerability of these structures requires a reliable, cost- and time-effective monitoring of their geomechanical condition. We have assessed the potential application of P-wave refraction for tracking the seasonal variations of seismic properties within an aged clay-filled railway embankment, located in southwest England. Seismic data were acquired repeatedly along the crest of the earthwork at regular time intervals, for a total period of 16 months. P-wave first-break times were picked from all available recorded traces, to obtain a set of hodocrones referenced to the same spatial locations, for various dates along the surveyed period of time. Traveltimes extracted from each acquisition were then compared to track the pattern of their temporal variability. The relevance of such variations over time was compared with the data experimental uncertainty. The multiple set of hodocrones was subsequently inverted using a tomographic approach, to retrieve a time-lapse model of VPVP for the embankment structure. To directly compare the reconstructed VPVP sections, identical initial models and spatial regularization were used for the inversion of all available data sets. A consistent temporal trend for P-wave traveltimes, and consequently for the reconstructed VPVP models, was identified. This pattern could be related to the seasonal distribution of precipitation and soil-water content measured on site.
Resumo:
OBJECTIVE: To compare visual and refractive outcomes between self-refracting spectacles (Adaptive Eyecare, Ltd, Oxford, UK), noncycloplegic autorefraction, and cycloplegic subjective refraction. DESIGN: Cross-sectional study. PARTICIPANTS: Chinese school-children aged 12 to 17 years. METHODS: Children with uncorrected visual acuity ≤ 6/12 in either eye underwent measurement of the logarithm of the minimum angle of resolution visual acuity, habitual correction, self-refraction without cycloplegia, autorefraction with and without cycloplegia, and subjective refraction with cycloplegia. MAIN OUTCOME MEASURES: Proportion of children achieving corrected visual acuity ≥ 6/7.5 with each modality; difference in spherical equivalent refractive error between each of the modalities and cycloplegic subjective refractive error. RESULTS: Among 556 eligible children of consenting parents, 554 (99.6%) completed self-refraction (mean age, 13.8 years; 59.7% girls; 54.0% currently wearing glasses). The proportion of children with visual acuity ≥ 6/7.5 in the better eye with habitual correction, self-refraction, noncycloplegic autorefraction, and cycloplegic subjective refraction were 34.8%, 92.4%, 99.5% and 99.8%, respectively (self-refraction versus cycloplegic subjective refraction, P<0.001). The mean difference between cycloplegic subjective refraction and noncycloplegic autorefraction (which was more myopic) was significant (-0.328 diopter [D]; Wilcoxon signed-rank test P<0.001), whereas cycloplegic subjective refraction and self-refraction did not differ significantly (-0.009 D; Wilcoxon signed-rank test P = 0.33). Spherical equivalent differed by ≥ 1.0 D in either direction from cycloplegic subjective refraction more frequently among right eyes for self-refraction (11.2%) than noncycloplegic autorefraction (6.0%; P = 0.002). Self-refraction power that differed by ≥ 1.0 D from cycloplegic subjective refractive error (11.2%) was significantly associated with presenting without spectacles (P = 0.011) and with greater absolute power of both spherical (P = 0.025) and cylindrical (P = 0.022) refractive error. CONCLUSIONS: Self-refraction seems to be less prone to accommodative inaccuracy than noncycloplegic autorefraction, another modality appropriate for use in areas where access to eye care providers is limited. Visual results seem to be comparable. Greater cylindrical power is associated with less accurate results; the adjustable glasses used in this study cannot correct astigmatism. Further studies of the practical applications of this modality are warranted. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.
Resumo:
PURPOSE:
To estimate the heritability of peripheral refraction in Chinese children and adolescents.
METHODS:
The authors examined 72 monozygotic (MZ) twins and 48 dizygotic (DZ) twins aged 8 to 20 years from a population-based twin registry. Temporal and nasal peripheral refraction, each 40° from the visual axis, and axial refraction were measured using an autorefractor. Relative peripheral refractive error (RPRE) was defined as the peripheral refraction minus the axial refraction. Heritability was assessed by structural equation modeling after adjustment for age and sex.
RESULTS:
The mean and SD of temporal refraction (T(40)), nasal refraction (N(40)), RPRE-T(40), RPRE-N(40), and T(40)-N(40) asymmetry were -0.27 ± 2.0 D, 0.36 ± 2.19 D, 1.18 ± 1.39 D, 1.80 ± 1.69 D, and -0.62 ± 1.58 D, respectively. The intraclass correlations for T(40) refraction, N(40) refraction, RPRE-T(40), RPRE-N(40), and T(40)-N(40) asymmetry were 0.87, 0.83, 0.65, 0.74, and 0.58 for MZ pairs and 0.49, 0.42, 0.30, 0.41, and 0.32 for DZ pairs, respectively. A model with additive genetic and unique environmental effects was the most parsimonious, with heritability values estimated as 0.84, 0.76, 0.63, 0.70, and 0.55, respectively, for the peripheral refractive parameters.
CONCLUSIONS:
Additive genetic effects appear to explain most of the variance in peripheral refraction and relative peripheral refraction when adjusting for the effects of axial refraction.
Resumo:
Purpose: We present an iterative framework for CT reconstruction from transmission ultrasound data which accurately and efficiently models the strong refraction effects that occur in our target application: Imaging the female breast. Methods: Our refractive ray tracing framework has its foundation in the fast marching method (FNMM) and it allows an accurate as well as efficient modeling of curved rays. We also describe a novel regularization scheme that yields further significant reconstruction quality improvements. A final contribution is the development of a realistic anthropomorphic digital breast phantom based on the NIH Visible Female data set. Results: Our system is able to resolve very fine details even in the presence of significant noise, and it reconstructs both sound speed and attenuation data. Excellent correspondence with a traditional, but significantly more computationally expensive wave equation solver is achieved. Conclusions: Apart from the accurate modeling of curved rays, decisive factors have also been our regularization scheme and the high-quality interpolation filter we have used. An added benefit of our framework is that it accelerates well on GPUs where we have shown that clinical 3D reconstruction speeds on the order of minutes are possible.
Resumo:
Refraction, interference, and diffraction are distinguishing features of wavelike phenomena. Although they are usually associated only with a purely spatial wave-propagation pattern, analogs to interference and diffraction involving the spatio-temporal dynamics of waves in one dimension have been discussed. We complete the triplet of analogies by discussing how spatio-temporal analogs to refraction are exhibited by a quantum particle in one dimension that is scattering off a step barrier. Similarly, birefringence in spacetime occurs for a spin-1/2 particle in a magnetic field.
Resumo:
Glassy films of 0.2[Sb(PO3)(3)]-0,8Sb(2)O(3) with 0.8 mum-thickness were deposited on quartz substrates by electron beam evaporation. A contraction in the film thickness (photoinduced decrease in volume) and photobleaching effect associated with a decrease of up to 25% in the index of refraction has been observed in the films after irradiation near the bandgap (3.89 eV), using the 350.7 nm (3.54 eV) Kr+ ion laser line with 2.5 W/cm(2) for 30 min. A loss of 30% in the phosphorus concentration was measured by wavelength dispersive X-ray microanalysis in the film after laser irradiation with 5.0 W/cm(2) for 1.0 h. These photoinduced changes in the samples are dependent on the power density and intensity profile of the laser beam. Using a Lloyd's mirror setup for continuous wave holography it was possible to record holographic gratings with period from 500 nm up to 20 mum and depth profile of similar to50 nm in the films after laser irradiation with 5.0 W/cm(2) for 1 h. Real-time diffraction efficiency measurements have shown that ultraviolet irradiation induces first a refractive index grating formation, and after this, the photocon traction effect takes place generating an irreversible relief grating. Diffraction efficiency up to 10% was achieved for the recorded gratings. 3D-refraction index measurements and atomic force microscopy images are presented. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We consider the two nonconcentric circles billiard, with the inner circle as a refringent medium, in order to study the classical dynamics of a light ray. The eccentricity controls the chaotic sea intensity and the refraction index acts on the integrable portion of the phase space, prompting the appearance and overlapping of isochrone resonances. Numerical results are presented and discussed.
Resumo:
Com base no clima de ondas para o sul da costa brasileira, a refração de ondas foi modelada para a obtenção de alturas e direção das ondas ao longo da costa sul de Santa Catarina. Essas informações permitem a estimativa da deriva litorânea potencial para a região. De acordo com a orientação da linha de costa, diferentes setores do litoral apresentam variados padrões de deriva. As estimativas foram realizadas com base nos dados médios anuais e para cada estação do ano, demonstrando assim a variabilidade dos padrões ao longo do ano. A configuração da linha de costa e os resultados das estimativas de intensidade e direção da deriva indicam o predomínio da deriva litorânea na porção sul da área e um equilíbrio entre processos de espraiamento e de deriva na porção norte. Padrões contrastantes de deriva entre a porção sul e norte da linha de costa indicam um balanço positivo de sedimentos na porção central, disponibilizando sedimentos para os processos de transporte através da costa. Considerando escalas temporais maiores, os padrões de deriva concordam com o processo de preenchimento costeiro que é controlado principalmente pelo aporte de sedimentos pela deriva litorânea.
Resumo:
We use Z-scan technique to investigate the nonlinear optical response of the thermotropic liquid crystal E7 in the neighborhood of the nematic-isotropic phase transition. The analysis of the data for the nonlinear optical birefringence is compatible with an effective critical exponent of the order parameter, beta = 0.28 +/- 0.03, which is close to the classical value, beta = 0.25, for a tricritical point. The nonlinear optical absorption in the nematic range depends on the geometrical configuration of the nematic director with respect to the polarization beam, and vanishes in the isotropic phase.
Resumo:
This dissertation examines the global technological and environmental history of copper smelting and the conflict that developed between historic preservation and environmental remediation at major copper smelting sites in the United States after their productive periods ended. Part I of the dissertation is a synthetic overview of the history of copper smelting and its environmental impact. After reviewing the basic metallurgy of copper ores, the dissertation contains successive chapters on the history of copper smelting to 1640, culminating in the so-called German, or Continental, processing system; on the emergence of the rival Welsh system during the British industrial revolution; and on the growth of American dominance in copper production the late 19th and early 20th centuries. The latter chapter focuses, in particular, on three of the most important early American copper districts: Michigan’s Keweenaw Peninsula, Tennessee’s Copper Basin, and Butte-Anaconda, Montana. As these three districts went into decline and ultimately out of production, they left a rich industrial heritage and significant waste and pollution problems generated by increasingly more sophisticated technologies capable of commercially processing steadily growing volumes of decreasingly rich ores. Part II of the dissertation looks at the conflict between historic preservation and environmental remediation that emerged locally and nationally in copper districts as they went into decline and eventually ceased production. Locally, former copper mining communities often split between those who wished to commemorate a region’s past importance and develop heritage tourism, and local developers who wished to clear up and clean out old industrial sites for other purposes. Nationally, Congress passed laws in the 1960s and 1970s mandating the preservation of historical resources (National Historic Preservation Act) and laws mandating the cleanup of contaminated landscapes (CERCLA, or Superfund), objectives sometimes in conflict – especially in the case of copper smelting sites. The dissertation devotes individual chapters to the conflicts that developed between environmental remediation, particularly involving the Environmental Protection Agency and the heritage movement in the Tennessee, Montana, and Michigan copper districts. A concluding chapter provides a broad model to illustrate the relationship between industrial decline, federal environmental remediation activities, and the growth of heritage consciousness in former copper mining and smelting areas, analyzes why the outcome varied in the three areas, and suggests methods for dealing with heritage-remediation issues to minimize conflict and maximize heritage preservation.