934 resultados para Refinery sludge
Resumo:
Wastewater treatment reduces environmental contamination by removing gross solids and mitigating the effects of pollution. Treatment also reduces the number of indicator organisms and pathogens. In this work, the fates of two coliform bacteria, Escherichia coli and Serratia marcescens, were analyzed in an activated sludge process to determine the main mechanisms involved in the reduction of pathogenic microorganisms during wastewater treatment. These bacteria, modified to express green fluorescent protein, were inoculated in an activated sludge unit and in batch systems containing wastewater. The results suggested that, among the different biological factors implied in bacterial removal, bacterivorous protozoa play a key role. Moreover, a representative number of bacteria persisted in the system as free-living or embedded cells, but their distribution into liquid or solid fractions varied depending on the bacterium tested, questioning the real value of bacterial indicators for the control of wastewater treatment process. Additionally, viable but nonculturable cells constituted an important part of the bacterial population adhered to solid fractions, what can be derived from the competition relationships with native bacteria, present in high densities in this environment. These facts, taken together, emphasize the need for reliable quantitative and qualitative analysis tools for the evaluation of pathogenic microbial composition in sludge, which could represent an undefined risk to public health and ecosystem functions when considering its recycling.
Resumo:
Neste trabalho foi estudado o tratamento simultâneo por biofiltração de emissões de compostos orgânicos voláteis, COV e gás sulfídrico, H2S, em estações de tratamento de despejos industriais, de refinaria de petróleo, ETDI. A biofiltração dos gases emanados da EDTI mostrou ser uma técnica de alta eficiência, atingindo valores de 95 a 99 % para tratamento simultâneo de COV e H2S em concentrações de 1000 e 100 ppmv, respectivamente. Foram realizados testes em 95 dias consecutivos de operação, em uma planta piloto instalada na Superintendência da Industrialização do Xisto, SIX, em São Mateus do Sul, Paraná, de março a agosto de 2006. O biofiltro foi do tipo fluxo ascendente, com 3,77 m3 de leito orgânico, composto de turfa, carvão ativado, lascas de madeira, serragem brita fina além de outros componentes menores. Foi realizada inoculação biológica com lodo filtrado de estação de tratamento de esgoto sanitário. As vazões de gás aplicadas variaram de 85 a 407 m3/h, resultando em taxas de carga de massa de 11,86 a 193,03 g de COV/h.m3 de leito e tempos de residência de 24 segundos a 6,5 minutos, com tempo ótimo de 1,6 minutos. A capacidade máxima de remoção do sistema encontrada, nas condições testadas, foi de 15 g de COV/h. m3, compatível com os valores encontrados na literatura para depuração biológica de COV na escala praticada. Também foi verificada a redução de componentes específicos de BTX, demonstrando boa degradabilidade dos compostos orgânicos. Finalmente o biofiltro demonstrou boa robustez biológica diante dos desvios operacionais intencionalmente provocados, tais como falta de umidade do leito, baixa temperatura, alta vazão, falta de carga de COV e baixo pH do leito. Depois de retomada a condição de operação estável, a biofiltração rapidamente atingiu o estado de equilíbrio, assegurando o uso eficiente e confiável da técnica no tratamento de gases de EDTI na indústria do hidrocarbonetos ou em refinarias de petróleo.
Resumo:
Half of the world’s urban population will live in informal settlements or “slums” by 2030. Affordable urban sanitation presents a unique set of challenges as the lack of space and resources to construct new latrines makes the de-sludging of existing pits necessary and is something that is currently done manually with significant associated health risks. Therefore various mechanised technologies have been developed to facilitate pit emptying, with the majority using a vacuum system to remove material from the top of the pit. However, this results in the gradual accumulation of unpumpable sludge in the pit, which eventually fills the latrine and forces it to be abandoned. This study has developed a method for fluidising unpumpable pit latrine sludge, based on laboratory experiments using a harmless synthetic sludge. Such a sludge consisting of clay and compost was developed to replicate the physical characteristics of pit latrine sludges characterised in Botswana during the 1980s. Undrained shear strength and density are identified as the critical parameters in controlling pumpability and a method of sludge characterisation based on these parameters is reported. In a series of fluidisation tests using a one fifth scale pit emptying device the reduction in sludge shear strength was found to be caused by i) dilution, which increases water content, and ii) remoulding, which involves mechanical agitation to break down the structure of the material. The tests demonstrated that even the strongest of sludges could be rendered “pumpable” by sufficient dilution. Additionally, air injection alone produced a three-fold decrease in strength of consolidated samples as a result of remoulding at constant water content. The implications for sludge treatment and disposal are discussed, and the classification of sludges according to the equipment required to remove them from the latrine is proposed. Possible field tests to estimate sludge density and shear strength are suggested. The feasibility of using low cost vacuum cleaners to replace expensive vane pumps is demonstrated. This offers great potential for the development of affordable pit emptying technologies that can remove significantly stronger sludges than current devices through fluidising the wastes at the bottom of the pit before emptying
Resumo:
Half of the world's urban population will live in informal settlements or ‘slums’ by 2030. Affordable urban sanitation presents a unique set of challenges as the lack of space and resources to construct new latrines makes the de-sludging of existing pits necessary and is something that is currently done manually with significant associated health risks. Various mechanised technologies have therefore been developed to facilitate pit emptying, with the majority using a vacuum system to remove material from the top of the pit. However, this results in the gradual accumulation of unpumpable sludge at the bottom of the pit, which eventually fills the latrine and forces it to be abandoned. This study has developed a method for fluidising unpumpable pit latrine sludge, based on laboratory experiments using a harmless synthetic sludge. The implications for sludge treatment and disposal are discussed, and the classification of sludges according to the equipment required to remove them from the latrine is proposed. Finally, further work is suggested, including the ongoing development of a device to physically characterise latrine sludge in-situ within the pit.
Resumo:
The bacterial diversity of activated sludge from submerged membrane bioreactor (SMBR) was investigated. A 16S rDNA clone library was generated, and 150 clones were screened using restriction fragment length polymorphism (RFLP). Of the screened clones, almost full-length 16S rDNA sequences of 64 clones were sequenced. Phylogenetic tree was constructed with a database containing clone sequences from this study and bacterial rDNA sequences from NCB1 for identification purposes. The 90.6% of the clones were affiliated with the two phyla Bacteroidetes (50%) and Proteobacteria (40%), and beta-, -gamma-, and delta-Proteobacteria accounted for 7.8%, 28.1%, and 4.7%, respectively. Minor portions were affiliated with the Actinobacteria and Firmicutes (both 3.1%). Only 6 out of 64 16S rDNA sequences exhibited similarities of more than 97% to classified bacterial species, which indicated that a substantial fraction of the clone sequences were derived from unknown taxa. Rarefaction analysis of operational taxonomic units (orrUs) clusters demonstrated that 150 clones screened were still insufficient to describe the whole bacterial diversity. Measurement of water quality parameter demonstrated that performance of the SMBR maintained high level, and the SMBR system remained stable during this study.
Resumo:
The graphite electrode sludge was sampled from a huge chloralkali plant in central China. The total level of PCDD/F was found as high as 378.85 mu g/kg sludge (dry weight). The patterns of PCDD/F in each homologue indicated the predominance of tetra- to octa-chlorinated PCDFs, Furthermore, the toxic 2,3,7,8-substituted PCDFs constituted over 80% of the total PCDFs in the sludge and the corresponding PCDDs were only at 15 mu g/kg level. The calculated value of the international toxic equivalence (I-TEQ) in sludge was 21.65 mu g/kg sludge (dry weight). This typical "dioxin chloralkali pattern" was apparently identified in the sediments near the effluent outlet of the chloralkali plant.