999 resultados para Redes Neuronais
Resumo:
Dissertação de mest. em Engenharia de Sistemas e Computação - Área de Sistemas de Controlo, Faculdade de Ciências e Tecnologia, Univ.do Algarve, 2001
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Esta tese incide sobre o desenvolvimento de modelos computacionais e de aplicações para a gestão do lado da procura, no âmbito das redes elétricas inteligentes. É estudado o desempenho dos intervenientes da rede elétrica inteligente, sendo apresentado um modelo do produtor-consumidor doméstico. O problema de despacho económico considerando previsão de produção e consumo de energia obtidos a partir de redes neuronais artificiais é apresentado. São estudados os modelos existentes no âmbito dos programas de resposta à procura e é desenvolvida uma ferramenta computacional baseada no algoritmo de fuzzy-clustering subtrativo. São analisados perfis de consumo e modos de operação, incluindo uma breve análise da introdução do veículo elétrico e de contingências na rede de energia elétrica. São apresentadas aplicações para a gestão de energia dos consumidores no âmbito do projeto piloto InovGrid. São desenvolvidos sistemas de automação para, aquisição monitorização, controlo e supervisão do consumo a partir de dados fornecidos pelos contadores inteligente que permitem a incorporação das ações dos consumidores na gestão do consumo de energia elétrica; SMART GRIDS - COMPUTATIONAL MODELS DEVELOPMENT AND DEMAND SIDE MANAGMENT APPLICATIONS Abstract: This thesis focuses on the development of computational models and its applications on the demand side management within the smart grid scope. The performance of the electrical network players is studied and a domestic prosumer model is presented. The economic dispatch problem considering the production forecast and the energy consumption obtained from artificial neural networks is also presented. The existing demand response models are studied and a computational tool based on the fuzzy subtractive clustering algorithm is developed. Energy consumption profiles and operational modes are analyzed, including a brief analysis of the electrical vehicle and contingencies on the electrical network. Consumer energy management applications within the scope of InovGrid pilot project are presented. Computational systems are developed for the acquisition, monitoring, control and supervision of consumption data provided by smart meters allowing to incorporate consumer actions on their electrical energy management.
Resumo:
Ao longo dos tempos tem existido um avanço, nas empresas, dirigido à preocupação com o bemestar dos trabalhadores, adotando por isso medidas preventivas. A formação especializada em Medicina do Trabalho é indispensável para o exercício de atividades de prevenção dos riscos profissionais e de promoção da saúde. A postura corporal pode ser definida como a posição e a orientação global do corpo e membros relativamente uns aos outros. Qualquer desvio na forma da coluna vertebral pode gerar solicitações funcionais prejudiciais que ocasionam um aumento de fadiga no trabalhador e leva ao longo do tempo a lesões graves. Cada vez mais surgem doenças profissionais provocadas pela adoção de más posturas, na realização de tarefas diárias dos trabalhadores. A boa postura corporal é uma tarefa específica que representa uma interação complexa entre a função biomecânica e neuromuscular. No presente plano de dissertação foram estudados diferentes classificadores tendo como objetivo classificar boas e más posturas corporais de trabalhadores em contexto de trabalho. Assim foram estudados diferentes classificadores de machine learnig, redes neuronais artificiais, support vector machine, árvores de decisão, análise discriminante, regressão logística, treebagger e naíve bayes. Para treino de classificadores foi realizada a aquisição tridimensional da postura da espinha a 100 pessoas, passando por uma parametrização e treino de diferentes classificadores para a determinação automática do tipo de postura corporal. O classificador que obteve melhor desempenho foi o Treebagger com uma classificação para True Positive de 93,3% e True Negative de 96,2%.
Resumo:
Este trabalho tem como objectivo a criação de modelos, resultantes da aplicação de algoritmos e técnicas de mineração de dados, que possam servir de suporte a um sistema de apoio à decisão útil a investidores do mercado de capitais. Os mercados de capitais, neste caso particular a Bolsa de Valores, são sistemas que gera diariamente grandes volumes de informação, cuja análise é complexa e não trivial para um investidor não profissional. Existem muitas variáveis que influenciam a decisão a tomar sobre a carteira de acções (vender, manter, comprar). Estas decisões têm como objectivo a maximização do lucro. Assim, um sistema que auxilie os investidores na tarefa de análise será considerado uma mais-valia. As decisões de um profissional são normalmente baseadas em dois tipos de análise: Fundamental e Técnica. A Análise Fundamental foca-se nos indicadores da “saúde financeira” da empresa, tendo como base a informação disponibilizada pela mesma. Por outro lado , a Análise Técnica, que será o foco deste trabalho, assenta na observação de indicadores estatísticos construídos com base no comportamento passado da acção. O recurso a estas análises permite aos investidores obterem alguma informação sobre a tendência da acção (subida ou descida). As análises apresentadas requerem um bom conhecimento do domínio do problema e tempo, o que as torna pouco acessíveis, sobretudo para os pequenos investidores. Com o intuito de democratizar o acesso a este tipo de investimentos, este trabalho, recorre a algoritmos de mineração de dados, tais como, árvores de classificação e redes neuronais que possam servir de base à construção de um modelo de suporte a obstáculos que podem impedir o investidor comum de entrar na Bolsa, designadamente o tempo gasto na análise e a complexidade da mesma, entre outros. Para a criação de modelos capazes de responder às expectativas, são realizados diversos ensaios recorrendo a vários algoritmos e conjuntos de dados, na busca do que melhor se adequa ao problema. Contudo é de ressalvar que a decisão de investimento estará sempre do lado do investidor, uma vez que o modelo deve permitir unicamente alimentar um sistema de apoio.
Resumo:
As vias de comunicação são indispensáveis para o desenvolvimento de uma nação, económica e socialmente. Num mundo globalizado, onde tudo deve chegar ao seu destino no menor espaço de tempo, as vias de comunicação assumem um papel vital. Assim, torna-se essencial construir e manter uma rede de transportes eficiente. Apesar de não ser o método mais eficiente, o transporte rodoviário é muitas vezes o mais económico e possibilita o transporte porta-a-porta, sendo em muitos casos o único meio de transporte possível. Por estas razões, o modo rodoviário tem uma quota significativa no mercado dos transportes, seja de passageiros ou mercadorias, tornando-o extremamente importante na rede de transportes de um país. Os países europeus fizeram um grande investimento na criação de extensas redes de estradas, cobrindo quase todo o seu território. Neste momento, começa-se a atingir o ponto onde a principal preocu+ação das entidades gestoras de estradas deixa de ser a construção de novas vias, passando a focar-se na necessidade de manutenção e conservação das vias existentes. Os pavimentos rodoviários, como todas as outras construções, requerem manutenção de forma a garantir bons níveis de serviço com qualidade, conforto e segurança. Devido aos custos inerentes às operações de manutenção de pavimentos, estas devem rigorosamente e com base em critérios científicos bem definidos. Assim, pretende-se evitar intervenções desnecessárias, mas também impedir que os danos se tornem irreparáveis e economicamente prejudiciais, com repercussões na segurança dos utilizadores. Para se estimar a vida útil de um pavimento é essencial realizar primeiro a caracterização estrutural do mesmo. Para isso, torna-se necessário conhecer o tipo de estrutura de um pavimento, nomeadamente a espessura e o módulo de elasticidade constituintes. A utilização de métodos de ensaio não destrutivos é cada vez mais reconhecida como uma forma eficaz para obter informações sobre o comportamento estrutural de pavimentos. Para efectuar estes ensaios, existem vários equipamentos. No entanto, dois deles, o Deflectómetro de Impacto e o Radar de Prospecção, têm demonstrado ser particularmente eficientes para avaliação da capacidade de carga de um pavimento, sendo estes equipamentos utilizados no âmbito deste estudo. Assim, para realização de ensaios de carga em pavimentos, o equipamento Deflectómetro de Impacto tem sido utilizado com sucesso para medir as deflexões à superfície de um pavimento em pontos pré-determinados quando sujeito a uma carga normalizada de forma a simular o efeito da passagem da roda de um camião. Complementarmente, para a obtenção de informações contínuas sobre a estrutura de um pavimento, o equipamento Radar de Prospecção permite conhecer o número de camadas e as suas espessuras através da utilização de ondas electromagnéticas. Os dados proporcionam, quando usados em conjunto com a realização de sondagens à rotação e poços em alguns locais, permitem uma caracterização mais precisa da condição estrutural de um pavimento e o estabelecimento de modelos de resposta, no caso de pavimentos existentes. Por outro lado, o processamento dos dados obtidos durante os ensaios “in situ” revela-se uma tarefa morosa e complexa. Actualmente, utilizando as espessuras das camadas do pavimento, os módulos de elasticidade das camadas são calculados através da “retro-análise” da bacia de deflexões medida nos ensaios de carga. Este método é iterativo, sendo que um engenheiro experiente testa várias estruturas diferentes de pavimento, até se obter uma estrutura cuja resposta seja o mais próximo possível da obtida durante os ensaios “in Situ”. Esta tarefa revela-se muito dependente da experiência do engenheiro, uma vez que as estruturas de pavimento a serem testadas maioritariamente do seu raciocínio. Outra desvantagem deste método é o facto de apresentar soluções múltiplas, dado que diferentes estruturas podem apresentar modelos de resposta iguais. A solução aceite é, muitas vezes, a que se julga mais provável, baseando-se novamente no raciocínio e experiência do engenheiro. A solução para o problema da enorme quantidade de dados a processar e das múltiplas soluções possíveis poderá ser a utilização de Redes Neuronais Artificiais (RNA) para auxiliar esta tarefa. As redes neuronais são elementos computacionais virtuais, cujo funcionamento é inspirado na forma como os sistemas nervosos biológicos, como o cérebro, processam a informação. Estes elementos são compostos por uma série de camadas, que por sua vez são compostas por neurónios. Durante a transmissão da informação entre neurónios, esta é modificada pela aplicação de um coeficiente, denominado “peso”. As redes neuronais apresentam uma habilidade muito útil, uma vez que são capazes de mapear uma função sem conhecer a sua fórmula matemática. Esta habilidade é utilizada em vários campos científicos como o reconhecimento de padrões, classificação ou compactação de dados. De forma a possibilitar o uso desta característica, a rede deverá ser devidamente “treinada” antes, processo realizado através da introdução de dois conjuntos de dados: os valores de entrada e os valores de saída pretendidos. Através de um processo cíclico de propagação da informação através das ligações entre neurónios, as redes ajustam-se gradualmente, apresentando melhores resultados. Apesar de existirem vários tipos de redes, as que aparentam ser as mais aptas para esta tarefa são as redes de retro-propagação. Estas possuem uma característica importante, nomeadamente o treino denominado “treino supervisionado”. Devido a este método de treino, as redes funcionam dentro da gama de variação dos dados fornecidos para o “treino” e, consequentemente, os resultados calculados também se encontram dentro da mesma gama, impedindo o aparecimento de soluções matemáticas com impossibilidade prática. De forma a tornar esta tarefa ainda mais simples, foi desenvolvido um programa de computador, NNPav, utilizando as RNA como parte integrante do seu processo de cálculo. O objectivo é tornar o processo de “retro-análise” totalmente automático e prevenir erros induzidos pela falta de experiência do utilizador. De forma a expandir ainda mais as funcionalidades do programa, foi implementado um processo de cálculo que realiza uma estimativa da capacidade de carga e da vida útil restante do pavimento, recorrendo a dois critérios de ruína. Estes critérios são normalmente utilizados no dimensionamento de pavimentos, de forma a prevenir o fendilhamento por fadiga e as deformações permanentes. Desta forma, o programa criado permite a estimativa da vida útil restante de um pavimento de forma eficiente, directamente a partir das deflexões e espessuras das camadas, medidas nos ensaios “in situ”. Todos os passos da caracterização estrutural do pavimento são efectuados pelo NNPav, seja recorrendo à utilização de redes neuronais ou a processos de cálculo matemático, incluindo a correcção do módulo de elasticidade da camada de misturas betuminosas para a temperatura de projecto e considerando as características de tráfego e taxas de crescimento do mesmo. Os testes efectuados às redes neuronais revelaram que foram alcançados resultados satisfatórios. Os níveis de erros na utilização de redes neuronais são semelhantes aos obtidos usando modelos de camadas linear-elásticas, excepto para o cálculo da vida útil com base num dos critérios, onde os erros obtidos foram mais altos. No entanto, este processo revela-se bastante mais rápido e possibilita o processamento dos dados por pessoal com menos experiência. Ao mesmo tempo, foi assegurado que nos ficheiros de resultados é possível analisar todos os dados calculados pelo programa, em várias fases de processamento de forma a permitir a análise detalhada dos mesmos. A possibilidade de estimar a capacidade de carga e a vida útil restante de um pavimento, contempladas no programa desenvolvido, representam também ferramentas importantes. Basicamente, o NNPav permite uma análise estrutural completa de um pavimento, estimando a sua vida útil com base nos ensaios de campo realizados pelo Deflectómetro de Impacto e pelo Radar de Prospecção, num único passo. Complementarmente, foi ainda desenvolvido e implementado no NNPav um módulo destinado ao dimensionamento de pavimentos novos. Este módulo permite que, dado um conjunto de estruturas de pavimento possíveis, seja estimada a capacidade de carga e a vida útil daquele pavimento. Este facto permite a análise de uma grande quantidade de estruturas de pavimento, e a fácil comparação dos resultados no ficheiro exportado. Apesar dos resultados obtidos neste trabalho serem bastante satisfatórios, os desenvolvimentos futuros na aplicação de Redes Neuronais na avaliação de pavimentos são ainda mais promissores. Uma vez que este trabalho foi limitado a uma moldura temporal inerente a um trabalho académico, a possibilidade de melhorar ainda mais a resposta das RNA fica em aberto. Apesar dos vários testes realizados às redes, de forma a obter as arquitecturas que apresentassem melhores resultados, as arquitecturas possíveis são virtualmente ilimitadas e pode ser uma área a aprofundar. As funcionalidades implementadas no programa foram as possíveis, dentro da moldura temporal referida, mas existem muitas funcionalidades a serem adicinadas ou expandidas, aumentando a funcionalidade do programa e a sua produtividade. Uma vez que esta é uma ferramenta que pode ser aplicada ao nível de gestão de redes rodoviárias, seria necessário estudar e desenvolver redes similares de forma a avaliar outros tipos de estruturas de pavimentos. Como conclusão final, apesar dos vários aspectos que podem, e devem ser melhorados, o programa desenvolvido provou ser uma ferramenta bastante útil e eficiente na avaliação estrutural de pavimentos com base em métodos de ensaio não destrutivos.
Resumo:
O trabalho que a seguir se apresenta tem como objectivo descrever a criação de um modelo que sirva de suporte a um sistema de apoio à decisão sobre o risco inerente à execução de projectos na área das Tecnologias de Informação (TI) recorrendo a técnicas de mineração de dados. Durante o ciclo de vida de um projecto, existem inúmeros factores que contribuem para o seu sucesso ou insucesso. A responsabilidade de monitorizar, antever e mitigar esses factores recai sobre o Gestor de Projecto. A gestão de projectos é uma tarefa difícil e dispendiosa, consome muitos recursos, depende de numerosas variáveis e, muitas vezes, até da própria experiência do Gestor de Projecto. Ao ser confrontado com as previsões de duração e de esforço para a execução de uma determinada tarefa, o Gestor de Projecto, exceptuando a sua percepção e intuição pessoal, não tem um modo objectivo de medir a plausibilidade dos valores que lhe são apresentados pelo eventual executor da tarefa. As referidas previsões são fundamentais para a organização, pois sobre elas são tomadas as decisões de planeamento global estratégico corporativo, de execução, de adiamento, de cancelamento, de adjudicação, de renegociação de âmbito, de adjudicação externa, entre outros. Esta propensão para o desvio, quando detectada numa fase inicial, pode ajudar a gerir melhor o risco associado à Gestão de Projectos. O sucesso de cada projecto terminado foi qualificado tendo em conta a ponderação de três factores: o desvio ao orçamentado, o desvio ao planeado e o desvio ao especificado. Analisando os projectos decorridos, e correlacionando alguns dos seus atributos com o seu grau de sucesso o modelo classifica, qualitativamente, um novo projecto quanto ao seu risco. Neste contexto o risco representa o grau de afastamento do projecto ao sucesso. Recorrendo a algoritmos de mineração de dados, tais como, árvores de classificação e redes neuronais, descreve-se o desenvolvimento de um modelo que suporta um sistema de apoio à decisão baseado na classificação de novos projectos. Os modelos são o resultado de um extensivo conjunto de testes de validação onde se procuram e refinam os indicadores que melhor caracterizam os atributos de um projecto e que mais influenciam o risco. Como suporte tecnológico para o desenvolvimento e teste foi utilizada a ferramenta Weka 3. Uma boa utilização do modelo proposto possibilitará a criação de planos de contingência mais detalhados e uma gestão mais próxima para projectos que apresentem uma maior propensão para o risco. Assim, o resultado final pretende constituir mais uma ferramenta à disposição do Gestor de Projecto.
Resumo:
A presente dissertação pretende conceber e implementar um sistema de controlo tolerante a falhas, no canal experimental de rega da Universidade de Évora, utilizando um modelo implementado em MATLAB/SIMULINK®. Como forma de responder a este desafio, analisaram-se várias técnicas de diagnóstico de falhas, tendo-se optado por técnicas baseadas em redes neuronais para o desenvolvimento de um sistema de detecção e isolamento de falhas no canal de rega, sem ter em conta o tipo de sistema de controlo utilizado. As redes neuronais foram, assim, os processadores não lineares utilizados e mais aconselhados em situações onde exista uma abundância de dados do processo, porque aprendem por exemplos e são suportadas por teorias estatísticas e de optimização, focando não somente o processamento de sinais, como também expandindo os horizontes desse processamento. A ênfase dos modelos das redes neuronais está na sua dinâmica, na sua estabilidade e no seu comportamento. Portanto, o trabalho de investigação do qual resultou esta Dissertação teve como principais objectivos o desenvolvimento de modelos de redes neuronais que representassem da melhor forma a dinâmica do canal de rega, de modo a obter um sistema de detecção de falhas que faça uma comparação entre os valores obtidos nos modelos e no processo. Com esta diferença de valores, da qual resultará um resíduo, é possível desenvolver tanto o sistema de detecção como de isolamento de falhas baseados nas redes neuronais, possibilitando assim o desenvolvimento dum sistema de controlo tolerante a falhas, que engloba os módulos de detecção, de isolamento/diagnóstico e de reconfiguração do canal de rega. Em síntese, na Dissertação realizada desenvolveu-se um sistema que permite reconfigurar o processo em caso de ocorrência de falhas, melhorando significativamente o desempenho do canal de rega.
Resumo:
Um dos maiores desafios tecnológicos no presente é o de se conseguir gerar e manter, de uma maneira eficiente e consistente, uma base de dados de objectos multimédia, em particular, de imagens. A necessidade de desenvolver métodos de pesquisa automáticos baseados no conteúdo semântico das imagens tornou-se de máxima importância. MPEG-7 é um standard que descreve o contudo dos dados multimédia que suportam estes requisitos operacionais. Adiciona um conjunto de descritores audiovisuais de baixo nível. O histograma é a característica mais utilizada para representar as características globais de uma imagem. Neste trabalho é usado o “Edge Histogram Descriptor” (EHD), que resulta numa representação de baixo nível que permite a computação da similaridade entre imagens. Neste trabalho, é obtida uma caracterização semântica da imagem baseada neste descritor usando dois métodos da classificação: o algoritmo k Nearest Neighbors (k-NN) e uma Rede Neuronal (RN) de retro propagação. No algoritmo k-NN é usada a distância Euclidiana entre os descritores de duas imagens para calcular a similaridade entre imagens diferentes. A RN requer um processo de aprendizagem prévia, que inclui responder correctamente às amostras do treino e às amostras de teste. No fim deste trabalho, será apresentado um estudo sobre os resultados dos dois métodos da classificação.
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde. Área de especialização: Ressonância Magnética
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
Electricity markets are complex environments with very particular characteristics. A critical issue regarding these specific characteristics concerns the constant changes they are subject to. This is a result of the electricity markets’ restructuring, which was performed so that the competitiveness could be increased, but it also had exponential implications in the increase of the complexity and unpredictability in those markets scope. The constant growth in markets unpredictability resulted in an amplified need for market intervenient entities in foreseeing market behaviour. The need for understanding the market mechanisms and how the involved players’ interaction affects the outcomes of the markets, contributed to the growth of usage of simulation tools. Multi-agent based software is particularly well fitted to analyze dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This dissertation presents ALBidS – Adaptive Learning strategic Bidding System, a multiagent system created to provide decision support to market negotiating players. This system is integrated with the MASCEM electricity market simulator, so that its advantage in supporting a market player can be tested using cases based on real markets’ data. ALBidS considers several different methodologies based on very distinct approaches, to provide alternative suggestions of which are the best actions for the supported player to perform. The approach chosen as the players’ actual action is selected by the employment of reinforcement learning algorithms, which for each different situation, simulation circumstances and context, decides which proposed action is the one with higher possibility of achieving the most success. Some of the considered approaches are supported by a mechanism that creates profiles of competitor players. These profiles are built accordingly to their observed past actions and reactions when faced with specific situations, such as success and failure. The system’s context awareness and simulation circumstances analysis, both in terms of results performance and execution time adaptation, are complementary mechanisms, which endow ALBidS with further adaptation and learning capabilities.
Resumo:
Neste trabalho estuda-se a geração de trajectórias em tempo real de um robô quadrúpede. As trajectórias podem dividir-se em duas componentes: rítmica e discreta. A componente rítmica das trajectórias é modelada por uma rede de oito osciladores acoplados, com simetria 4 2 Z Z . Cada oscilador é modelado matematicamente por um sistema de Equações Diferenciais Ordinárias. A referida rede foi proposta por Golubitsky, Stewart, Buono e Collins (1999, 2000), para gerar os passos locomotores de animais quadrúpedes. O trabalho constitui a primeira aplicação desta rede à geração de trajectórias de robôs quadrúpedes. A derivação deste modelo baseia-se na biologia, onde se crê que Geradores Centrais de Padrões de locomoção (CPGs), constituídos por redes neuronais, geram os ritmos associados aos passos locomotores dos animais. O modelo proposto gera soluções periódicas identificadas com os padrões locomotores quadrúpedes, como o andar, o saltar, o galopar, entre outros. A componente discreta das trajectórias dos robôs usa-se para ajustar a parte rítmica das trajectórias. Este tipo de abordagem é útil no controlo da locomoção em terrenos irregulares, em locomoção guiada (por exemplo, mover as pernas enquanto desempenha tarefas discretas para colocar as pernas em localizações específicas) e em percussão. Simulou-se numericamente o modelo de CPG usando o oscilador de Hopf para modelar a parte rítmica do movimento e um modelo inspirado no modelo VITE para modelar a parte discreta do movimento. Variou-se o parâmetro g e mediram-se a amplitude e a frequência das soluções periódicas identificadas com o passo locomotor quadrúpede Trot, para variação deste parâmetro. A parte discreta foi inserida na parte rítmica de duas formas distintas: (a) como um offset, (b) somada às equações que geram a parte rítmica. Os resultados obtidos para o caso (a), revelam que a amplitude e a frequência se mantêm constantes em função de g. Os resultados obtidos para o caso (b) revelam que a amplitude e a frequência aumentam até um determinado valor de g e depois diminuem à medida que o g aumenta, numa curva quase sinusoidal. A variação da amplitude das soluções periódicas traduz-se numa variação directamente proporcional na extensão do movimento do robô. A velocidade da locomoção do robô varia com a frequência das soluções periódicas, que são identificadas com passos locomotores quadrúpedes.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre Em Engenharia Química e Biológica Ramo de processos Químicos