948 resultados para Red-cell Mass
Resumo:
Insulin secretion from pancreatic β cells plays a central role in the control of blood glucose levels. The amount of insulin released by β cells is precisely adjusted to match organism requirements. A number of conditions that arise during life, including pregnancy and obesity, can result in a decreased sensitivity of insulin target tissues and a consequent rise in insulin needs. To preserve glucose homoeostasis, the augmented insulin demand requires a compensatory expansion of the pancreatic β cell mass and an increase in its secretory activity. This compensatory process is accompanied by modifications in β cell gene expression, although the molecular mechanisms underlying the phenomenon are still poorly understood. Emerging evidence indicates that at least part of these compensatory events may be orchestrated by changes in the level of a novel class of gene regulators, the microRNAs. Indeed, several of these small, non-coding RNAs have either positive or negative impacts on β cell proliferation and survival. The studies reviewed here suggest that the balance between the actions of these two groups of microRNAs, which have opposing functional effects, can determine whether β cells expand sufficiently to maintain blood glucose levels in the normal range or fail to meet insulin demand and thus lead, as a consequence, towards diabetes manifestation. A better understanding of the mechanisms governing changes in the microRNA profile will open the way for the development of new strategies to prevent and/or treat both type 2 and gestational diabetes.
Resumo:
Eighty micrograms red blood cell (RBC) ghosts from patients who had previously exhibited the cutaneous form of loxoscelism (presenting localized dermonecrosis) and the viscerocutaneous form of loxoscelism (presenting dermonecrosis, hemoglobinuria, hematuria, and jaundice) and from controls were incubated with 2.5 µg crude Loxosceles gaucho venom in 5 mM phosphate buffer, pH 7.4, at 37ºC. Among all membrane proteins, quantitative proteolysis of the important integral transmembrane protein 3 increased with venom dose and with incubation time from 30 to 120 min, as demonstrated by gel densitometry. Similar quantitative data were obtained for RBC ghosts from patients and from control subjects, a fact that argues against the possibility of genetic factors favoring the hemolytic viscerocutaneous form. These data suggest that the clinical forms may be different types of the same disease, with the viscerocutaneous form being the result of large amounts of intravascularly injected venom and the superficial form being the result of in situ venom action. Since protein 3 is a housekeeping integral membrane protein, whose genetic deficiency leads to hemolytic anemia, it is reasonable to relate it to the hemolysis which occurs in the viscerocutaneous form of loxoscelism. The venom protease responsible for the process was not inhibited after 120-min incubation by 0.2 mM paramethylsulfonyl fluoride or by 0.2 mM N-ethylmaleimide but was inhibited by 25 mM ethylenediaminetetraacetic acid (a calcium-chelating agent) in 5 mM phosphate buffer at pH 7.4, which suggests that the enzyme is a calcium-dependent metalloprotease.
Resumo:
A low-protein diet leads to functional and structural pancreatic islet alterations, including islet hypotrophy. Insulin-signaling pathways are involved in several adaptive responses by pancreatic islets. We determined the levels of some insulin-signaling proteins related to pancreatic islet function and growth in malnourished rats. Adult male Wistar rats (N = 20 per group) were fed a 17% protein (normal-protein diet; NP) or 6% protein (low-protein diet; LP), for 8 weeks. At the end of this period, blood glucose and serum insulin and albumin levels were measured. The morphometric parameters of the endocrine pancreas and the content of some proteins in islet lysates were determined. The β-cell mass was significantly reduced (≅65%) in normoglycemic but hypoinsulinemic LP rats compared to NP rats. Associated with these alterations, a significant 30% reduction in insulin receptor substrate-1 and a 70% increase in insulin receptor substrate-2 protein content were observed in LP islets compared to NP islets. The phosphorylated serine-threonine protein kinase (pAkt)/Akt protein ratio was similar in LP and NP islets. The phosphorylated forkhead-O1 (pFoxO1)/FoxO1 protein ratio was decreased by 43% in LP islets compared to NP islets (P < 0.05). Finally, the ratio of phosphorylated-extracellular signal-related kinase 1/2 (pErk1/2) to total Erk1/2 protein levels was decreased by 71% in LP islets compared to NP islets (P < 0.05). Therefore, the reduced β-cell mass observed in LP rats is associated with the reduction of phosphorylation in mitogenic-related signals, FoxO1 and Erk proteins. The cause/effect basis of this association remains to be determined.
Resumo:
Diabetes mellitus represents a serious public health problem owing to its global prevalence in the last decade. The causes of this metabolic disease include dysfunction and/or insufficient number of β cells. Existing diabetes mellitus treatments do not reverse or control the disease. Therefore, β-cell mass restoration might be a promising treatment. Several restoration approaches have been developed: inducing the proliferation of remaining insulin-producing cells, de novo islet formation from pancreatic progenitor cells (neogenesis), and converting non-β cells within the pancreas to β cells (transdifferentiation) are the most direct, simple, and least invasive ways to increase β-cell mass. However, their clinical significance is yet to be determined. Hypothetically, β cells or islet transplantation methods might be curative strategies for diabetes mellitus; however, the scarcity of donors limits the clinical application of these approaches. Thus, alternative cell sources for β-cell replacement could include embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells. However, most differentiated cells obtained using these techniques are functionally immature and show poor glucose-stimulated insulin secretion compared with native β cells. Currently, their clinical use is still hampered by ethical issues and the risk of tumor development post transplantation. In this review, we briefly summarize the current knowledge of mouse pancreas organogenesis, morphogenesis, and maturation, including the molecular mechanisms involved. We then discuss two possible approaches of β-cell mass restoration for diabetes mellitus therapy: β-cell regeneration and β-cell replacement. We critically analyze each strategy with respect to the accessibility of the cells, potential risk to patients, and possible clinical outcomes.
Resumo:
Spontaneous teratocarcinomas are ovarian or testicular tumors which have their origins in germ cells. The tumors contain a disorganized array of benign differentiated cells as well as an undifferentiated population of malignant stem cells, the embryonal carcinoma or EC cells. These pluripotent stem cells in tissue culture share many properties with the transient pluripotent cells of the early embryo, and might therefore serve as models for the investigation of developmental events ill vitro. The property of EC cells of prime interest in this study is an in vivo phenomenon. Certain EC cell lines are known to be regulated ill vivo and to differentiate normally in association with normal embryonic cells, resulting in chimeric mice. These mice have two genetically distinct cell populations, one of which is derived from the originally malignant EC cells. This has usually been accomplished by injection of the EC cells into the Day 3 blastocyst. In this study, the interactions between earlier stage embryos and EC cells have been tested by aggregating clumps of EC cells with Day 2 embryos. The few previous aggregation studies produced a high degree of abnormality in chimeric embryos, but the EC cells employed had known chromosomal abnormalities. In this study, two diploid EC cell lines (P19 and Pi0) were aggregated with 2.5 day mouse embryos, and were found to behave quite differently in the embryonic environment. P19 containing aggregates generally resorbed early, and the few embryos recovered at midgestation were normal and non-chimeric. Pi0 containing aggregates survived in high numbers to midgestation, and the Pi0 cells were very successful in colonizing the embryo. All these embryos were chimeric, and the contribution by the EC cells to each chimera was very high. However, these heavily chimeric embryos were all abnormal. Blastocyst injection had previously produced some abnormal embryos with high Pl0 contributions in addition to the live born mice, which had lower EC contributions. This study now adds more support to the hypothesis that high EC contributions may be incompatible with normal development. The possibility that the abnormalities were due to the mixing of temporally asynchronous embryonic cell types in the aggregates was tested by aggregating normal pluripotent cells taken from 3.5 day embryos with 2.5 day embryos. Early embryo loss was very high, and histological studies showed that the majority of these embryos died by 6.5 days development. Some embryos escaped this early death such that some healthy chimeras were recovered, in contrast to recovery of abnormal chimeric embryos following Pl0-morula aggregations, and non-chimeric embryos following P19-morula aggregations. This somewhat surprising adverse effect on development following aggregation of normal cell types suggests that there are developmental difficulties associated with the mixing of asynchronous cell types in aggregates. However, the greater magnitude of the adverse effects when the aggregates contained tumor derived cells suggests that EC cells should not be considered the complete equivalent of the pluripotent cells of the early embryo.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: The first distinct differentiation event in mammals occurs at the blastocyst stage when totipotent blastomeres differentiate into either pluripotent inner cell mass (ICM) or multipotent trophectoderm (TE). Here we determined, for the first time, global gene expression patterns in the ICM and TE isolated from bovine blastocysts. The ICM and TE were isolated from blastocysts harvested at day 8 after insemination by magnetic activated cell sorting, and cDNA sequenced using the SOLiD 4.0 system.Results: A total of 870 genes were differentially expressed between ICM and TE. Several genes characteristic of ICM (for example, NANOG, SOX2, and STAT3) and TE (ELF5, GATA3, and KRT18) in mouse and human showed similar patterns in bovine. Other genes, however, showed differences in expression between ICM and TE that deviates from the expected based on mouse and human.Conclusion: Analysis of gene expression indicated that differentiation of blastomeres of the morula-stage embryo into the ICM and TE of the blastocyst is accompanied by differences between the two cell lineages in expression of genes controlling metabolic processes, endocytosis, hatching from the zona pellucida, paracrine and endocrine signaling with the mother, and genes supporting the changes in cellular architecture, stemness, and hematopoiesis necessary for development of the trophoblast.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)