989 resultados para Recruitment rate
Resumo:
Chondracanthus chamissoi (C. Agardh) Kutzing is an economically important red seaweed with an extended latitudinal distribution along the south-east Pacific. Here we report on the seasonal in vitro germination of carpospores and tetraspores from four populations distributed from 27 to 41 degrees S on the Chilean coast. Our results show that both types of spores exhibited a different physiological behavior related to the geographic origin of the specimens. Germination occurred throughout the year for both spore types in the four populations. However, for the northern locations (Calderilla, La Herradura and Puerto Aldea) germination was higher in spring, while for the southern location (Lechagua), germination was higher in summer. The growth rate of carposporelings and tetrasporelings varied seasonally in ail locations studied, with higher growth in spring. Among all, carposporelings from Lechagua specimens reached the highest growth rates (9.3 +/- 0.2% d(-1)). However, spores from Herradura and P. Aldea had a good germination and SGR in all seasons and would be good candidates to start spores-based cultivation of this valuable resource in Chile. (C) 2009 Elsevier B.V. All rights reserved
Resumo:
Cytoskeleton controls the stability of transcripts, by mechanisms that involve mRNAs and eEF1A attachment to it. Besides, it plays a key role in protein synthesis and secretion, which seems to be impaired in somatotrophs of hypothyroid rats, whose cytoskeleton is disarranged. This study investigated the: eEF1A and GH mRNA binding to cytoskeleton plus GH mRNA translation rate and GH secretion, in sham-operated and thyroidectomized rats treated with T3 or saline, and killed 30 min thereafter. Thyroidectomy reduced: (a) pituitary F-actin content, and eEF1A plus GH mRNA binding to it; (b) GH mRNA recruitment to polysome; and (c) liver IGF-1 mRNA expression, indicating that GH mRNA stability and translation rate, as well as GH secretion were impaired. T3 acutely reversed all these changes, which points toward a nongenomic action of T3 on cytoskeleton rearrangement, which might contribute to the increase on GH mRNA translation rate and GH secretion. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Whereas it is well known that T3 inhibits TSH beta gene transcription, its effects on TSH beta mRNA stability and translation have been poorly investigated. This study examined these possibilities, by evaluating the TSH beta transcripts poly(A) tail length, translational rate and binding to cytoskeleton, in pituitaries of thyroidectomized and sham-operated rats treated with T3 or saline, and killed 30 min thereafter. The hypothyroidism induced an increase of TSH beta transcript poly(A) tail, as well as of its content in ribosomes and attachment to cytoskeleton. The hypothyroid rats acutely treated with T3 exhibited a reduction of TSH beta mRNA poly(A) tail length and recruitment to ribosomes, indicating that this treatment decreased the stability and translation rate of TSH beta mRNA. Nevertheless, acute T3 administration to sham-operated rats provoked an increase of TSH beta transcripts binding to ribosomes. These data add new insight to an important role of T3 in rapidly regulating TSH gene expression at posttranscriptional level. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Life-history information constitutes the raw data for building population models used in species conservation. We provide life-history data for the endangered Santa Catalina Island Rattlesnake, Crotalus catalinensis. We use data from 277 observations of C. catalinensis made between 2002 and 2011 on the island. Mean snout-vent length (SVL) of adult C. catalinensis was 643 mm for males and 631 mm for females; the difference was not significant. The degree of sexual size dimorphism (SSD; using SVL) was -0.02. However, sexes were dimorphic in total length ( SVL + tail length), relative tail length, and stoutness. Juvenile recruitment occurs during late-summer. In their first year of life, juveniles seem to grow at a rate of about 1.7 cm/mo. Females seem to become mature around 570 mm SVL, probably in the year when they become 2 y old. Scattered literature data corroborates the time of juvenile recruitment described herein. Growth in C. catalinensis seems to be slower than that of C. ruber, its sister taxa, but similar to other rattlesnakes.
Resumo:
Introduction: Many experimental models using lung lavage have been developed for the study of acute respiratory distress syndrome (ARDS). The original technique has been modified by many authors, resulting in difficulties with reproducibility. There is insufficient detail on the lung injury models used, including hemodynamic stability during animal preparation and drawbacks encountered such as mortality. The authors studied the effects of the pulmonary recruitment and the use of fixed tidal volume (Vt) or fixed inspiratory pressure in the experimental ARDS model installation. Methods: Adult rabbits were submitted to repeated lung lavages with 30 ml/kg warm saline until the ARDS definition (PaO2/FiO(2) <= 100) was reached. The animals were divided into three groups, according to the technique used for mechanical ventilation: 1) fixed Vt of 10 ml/kg; 2) fixed inspiratory pressure (IP) with a tidal volume of 10 ml/kg prior to the first lung lavage; and 3) fixed Vt of 10 ml/kg with pulmonary recruitment before the first lavage. Results: The use of alveolar recruitment maneuvers, and the use of a fixed Vt or IP between the lung lavages did not change the number of lung lavages necessary to obtain the experimental model of ARDS or the hemodynamic stability of the animals during the procedure. A trend was observed toward an increased mortality rate with the recruitment maneuver and with the use of a fixed IP. Discussion: There were no differences between the three study groups, with no disadvantage in method of lung recruitment, either fixed tidal volume or fixed inspiratory pressure, regarding the number of lung lavages necessary to obtain the ARDS animal model. Furthermore, the three different procedures resulted in good hemodynamic stability of the animals, and low mortality rate. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Speeding the VO2 kinetics results in a reduction of the O2 deficit. Two factors might determine VO2 kinetics: oxygen delivery to muscle (Tschakovsky and Hughson 1999) and a muscle 'metabolic inertia' (Grassi et al. 1996). Therefore, in study 1 we investigated VO2 kinetics and cardiovascular system adaptations during step exercise transitions in different regions of the moderate domain. In study 2 we investigated muscle oxygenation and cardio-pulmonary adaptations during step exercise tests before, after and over a period of training. Study 1 methods: Seven subjects (26 ± 8 yr; 176 ± 5 cm; 69 ± 6 kg) performed 4 types of step transition from rest (0-50W; 0-100W) or elevate baseline (25-75W; 25-125W). GET and VO2max were assessed before testing. O2 uptake and were measured during testing. Study 2 methods: 10 subjects (25 ± 4 yr; 175 ± 9 cm; 71 ± 12 kg) performed a step transition test (0 to 100 W) before, after and during 4 weeks of endurance training (ET). VO2max and GET were assessed before and after of ET (40 minutes, 3 times a week, 60% O2max). VO2 uptake, Q and deoxyheamoglobin were measured during testing. Study 1 results: VO2 τ and the functional gain were slower in the upper regions of the moderate domain. Q increased more abruptly during rest to work condition. Q τ was faster than VO2 τ for each exercise step. Study 2 results: VO2 τ became faster after ET (25%) and particularly after 1 training session (4%). Q kinetics changed after 4 training sessions nevertheless it was always faster than VO2 τ. An attenuation in ∆[HHb] /∆VO2 was detectible. Conclusion: these investigations suggest that muscle fibres recruitment exerts a influence on the VO2 response within the moderate domain either during different forms of step transition or following ET.
Resumo:
In groves of ectomycorrhizal caesalpiniaceous species in the Atlantic coastal forest of Central Africa the dominant tree Microberlinia bisulcata, which is shade-intolerant as a seedling but highly light-responding as a sapling, shows very limited regeneration. M. bisulcata saplings were mapped in an 82.5-ha plot at Korup and found to be located significantly far (>40 m) away from adults, a result confirmed by direct testing in a second 56-ha plot. Sapling growth over 6 years, the distribution of newly emerging seedlings around adults, recruitment of saplings in a large opening and the outward extent of seedlings at the grove edge were also investigated. Two processes appear to have been operating: (1) a very strong and consistent restriction of the very numerous seedlings establishing after masting close to adults, and (2) a strong but highly spatially variable promotion of distant survivors by increased light from the deaths of large trees of species other than M. bisulcata (which itself has very low mortality rate). This leads to an apparent escape-from-adults effect. To maintain saplings in the shade between multiple short periods of release ectomycorrhizal connections to other co-occurring caesalp species may enable a rachet-type mechanism. The recorded sapling dynamics currently contribute an essential part of the long-term cycling of the groves. M. bisulcata is an interesting example of an important group of tropical trees, particularly in Africa, which are both highly light-demanding when young yet capable also of forming very large forest emergents. To more comprehensively explain tropical tree responses, the case is made for adding a new dimension to the trade-off concept of early tree light-response versus adult longevity.
Resumo:
OBJECTIVE: To evaluate pulmonary and cardiovascular effects of a recruitment maneuver (RM) combined with positive end-expiratory pressure (PEEP) during total intravenous anesthesia in ponies. ANIMALS: 6 healthy adult Shetland ponies. PROCEDURE: After premedication with detomidine (10 microg/kg, IV), anesthesia was induced with climazolam (0.06 mg/kg, IV) and ketamine (2.2 mg/kg, IV) and maintained with a constant rate infusion of detomidine (0.024 mg/kg/h), climazolam (0.036 mg/kg/h), and ketamine (2.4 mg/kg/h). The RM was preceded by an incremental PEEP titration and followed by a decremental PEEP titration, both at a constant airway pressure difference (deltaP) of 20 cm H2O. The RM consisted of a stepwise increase in deltaP by 25, 30, and 35 cm H2O obtained by increasing peak inspiratory pressure (PIP) to 45, 50, and 55 cm H2O, while maintaining PEEP at 20 cm H2O. Hemodynamic and pulmonary variables were analyzed at every step of the PEEP titration-RM. RESULTS: During the PEEP titration-RM, there was a significant increase in PaO 2 (+12%), dynamic compliance (+ 62%), and heart rate (+17%) and a decrease in shunt (-19%) and mean arterial blood pressure (-21%) was recorded. Cardiac output remained stable. CONCLUSIONS AND CLINICAL RELEVANCE: Although baseline oxygenation was high, Pa(O2) and dynamic compliance further increased during the RM. Despite the use of high PIP and PEEP and a high tidal volume, limited cardiovascular compromise was detected. A PEEP titration-RM may be used to improve oxygenation in anesthetized ponies. During stable hemodynamic conditions, PEEP titration-RM can be performed with acceptable adverse cardiovascular effects.
Resumo:
This study quantitatively investigated the analgesic action of a low-dose constant-rate-infusion (CRI) of racemic ketamine (as a 0.5 mg kg(-1) bolus and at a dose rate of 10 microg kg(-1) min(-1)) in conscious dogs using a nociceptive withdrawal reflex (NWR) and with enantioselective measurement of plasma levels of ketamine and norketamine. Withdrawal reflexes evoked by transcutaneous single and repeated electrical stimulation (10 pulses, 5 Hz) of the digital plantar nerve were recorded from the biceps femoris muscle using surface electromyography. Ketamine did not affect NWR thresholds or the recruitment curves after a single nociceptive stimulation. Temporal summation (as evaluated by repeated stimuli) and the evoked behavioural response scores were however reduced compared to baseline demonstrating the antinociceptive activity of ketamine correlated with the peak plasma concentrations. Thereafter the plasma levels at pseudo-steady-state did not modulate temporal summation. Based on these experimental findings low-dose ketamine CRI cannot be recommended for use as a sole analgesic in the dog.
Resumo:
OBJECTIVE Cyclic recruitment and derecruitment of atelectasis can occur during mechanical ventilation, especially in injured lungs. Experimentally, cyclic recruitment and derecruitment can be quantified by respiration-dependent changes in PaO2 (ΔPaO2), reflecting the varying intrapulmonary shunt fraction within the respiratory cycle. This study investigated the effect of inspiration to expiration ratio upon ΔPaO2 and Horowitz index. DESIGN Prospective randomized study. SETTING Laboratory investigation. SUBJECTS Piglets, average weight 30 ± 2 kg. INTERVENTIONS At respiratory rate 6 breaths/min, end-inspiratory pressure (Pendinsp) 40 cm H2O, positive end-expiratory pressure 5 cm H2O, and FIO2 1.0, measurements were performed at randomly set inspiration to expiration ratios during baseline healthy and mild surfactant depletion injury. Lung damage was titrated by repetitive surfactant washout to induce maximal cyclic recruitment and derecruitment as measured by multifrequency phase fluorimetry. Regional ventilation distribution was evaluated by electrical impedance tomography. Step changes in airway pressure from 5 to 40 cm H2O and vice versa were performed after lavage to calculate PO2-based recruitment and derecruitment time constants (TAU). MEASUREMENTS AND MAIN RESULTS In baseline healthy, cyclic recruitment and derecruitment could not be provoked, whereas in model acute respiratory distress syndrome, the highest ΔPaO2 were routinely detected at an inspiration to expiration ratio of 1:4 (range, 52-277 torr [6.9-36.9 kPa]). Shorter expiration time reduced cyclic recruitment and derecruitment significantly (158 ± 85 torr [21.1 ± 11.3 kPa] [inspiration to expiration ratio, 1:4]; 25 ± 12 torr [3.3 ± 1.6 kPa] [inspiration to expiration ratio, 4:1]; p < 0.0001), whereas the PaO2/FIO2 ratio increased (267 ± 50 [inspiration to expiration ratio, 1:4]; 424 ± 53 [inspiration to expiration ratio, 4:1]; p < 0.0001). Correspondingly, regional ventilation redistributed toward dependent lung regions (p < 0.0001). Recruitment was much faster (TAU: fast 1.6 s [78%]; slow 9.2 s) than derecruitment (TAU: fast 3.1 s [87%]; slow 17.7 s) (p = 0.0078). CONCLUSIONS Inverse ratio ventilation minimizes cyclic recruitment and derecruitment of atelectasis in an experimental model of surfactant-depleted pigs. Time constants for recruitment and derecruitment, and regional ventilation distribution, reflect these findings and highlight the time dependency of cyclic recruitment and derecruitment.
Resumo:
Due to atmospheric accumulation of anthropogenic CO2 the partial pressure of carbon dioxide (pCO2) in surface seawater increases and the pH decreases. This process known as ocean acidification might have severe effects on marine organisms and ecosystems. The present study addresses the effect of ocean acidification on early developmental stages, the most sensitive stages in life history, of the Atlantic herring (Clupea harengus L.). Eggs of the Atlantic herring were fertilized and incubated in artificially acidified seawater (pCO2 1260, 1859, 2626, 2903, 4635 µatm) and a control treatment (pCO2 480 µatm) until the main hatch of herring larvae occurred. The development of the embryos was monitored daily and newly hatched larvae were sampled to analyze their morphometrics, and their condition by measuring the RNA/DNA ratios. Elevated pCO2 neither affected the embryogenesis nor the hatch rate. Furthermore the results showed no linear relationship betweenpCO2 and total length, dry weight, yolk sac area and otolith area of the newly hatched larvae. For pCO2 and RNA/DNA ratio, however, a significant negative linear relationship was found. The RNA concentration at hatching was reduced at higher pCO2 levels, which could lead to a decreased protein biosynthesis. The results indicate that an increased pCO2 can affect the metabolism of herring embryos negatively. Accordingly, further somatic growth of the larvae could be reduced. This can have consequences for the larval fish, since smaller and slow growing individuals have a lower survival potential due to lower feeding success and increased predation mortality. The regulatory mechanisms necessary to compensate for effects of hypercapnia could therefore lead to lower larval survival. Since the recruitment of fish seems to be determined during the early life stages, future research on the factors influencing these stages are of great importance in fisheries science.
Resumo:
Ocean acidification may negatively impact the early life stages of some marine invertebrates including corals. Although reduced growth of juvenile corals in acidified seawater has been reported, coral larvae have been reported to demonstrate some level of tolerance to reduced pH. We hypothesize that the observed tolerance of coral larvae to low pH may be partly explained by reduced metabolic rates in acidified seawater because both calcifying and non-calcifying marine invertebrates could show metabolic depression under reduced pH in order to enhance their survival. In this study, after 3-d and 7-d exposure to three different pH levels (8.0, 7.6, and 7.3), we found that the oxygen consumption of Acropora digitifera larvae tended to be suppressed with reduced pH, although a statistically significant difference was not observed between pH conditions. Larval metamorphosis was also observed, confirming that successful recruitment is impaired when metamorphosis is disrupted, despite larval survival. Results also showed that the metamorphosis rate significantly decreased under acidified seawater conditions after both short (2 h) and long (7 d) term exposure. These results imply that acidified seawater impacts larval physiology, suggesting that suppressed metabolism and metamorphosis may alter the dispersal potential of larvae and subsequently reduce the resilience of coral communities in the near future as the ocean pH decreases.
Resumo:
AIMS: Hydrogen sulfide (H2S) is a vasoactive gasotransmitter that is endogenously produced in the vasculature by the enzyme cystathionine γ-lyase (CSE). However, the importance of CSE activity and local H2S generation for ischaemic vascular remodelling remains completely unknown. In this study, we examine the hypothesis that CSE critically regulates ischaemic vascular remodelling involving H2S-dependent mononuclear cell regulation of arteriogenesis. METHODS AND RESULTS: Arteriogenesis including mature vessel density, collateral formation, blood flow, and SPY angiographic blush rate were determined in wild-type (WT) and CSE knockout (KO) mice at different time points following femoral artery ligation (FAL). The role of endogenous H2S in regulation of IL-16 expression and subsequent recruitment of monocytes, and expression of VEGF and bFGF in ischaemic tissues, were determined along with endothelial progenitor cell (CD34/Flk1) formation and function. FAL of WT mice significantly increased CSE activity, expression and endogenous H2S generation in ischaemic tissues, and monocyte infiltration, which was absent in CSE-deficient mice. Treatment of CSE KO mice with the polysulfide donor diallyl trisulfide restored ischaemic vascular remodelling, monocyte infiltration, and cytokine expression. Importantly, exogenous H2S therapy restored nitric oxide (NO) bioavailability in CSE KO mice that was responsible for monocyte recruitment and arteriogenesis. CONCLUSION: Endogenous CSE/H2S regulates ischaemic vascular remodelling mediated during hind limb ischaemia through NO-dependent monocyte recruitment and cytokine induction revealing a previously unknown mechanism of arteriogenesis.
Resumo:
Since insect species are poikilothermic organisms, they generally exhibit different growth patterns depending on the temperature at which they develop. This factor is important in forensic entomology, especially for estimating postmortem interval (PMI) when it is based on the developmental time of the insects reared in decomposing bodies. This study aimed to estimate the rates of development, viability, and survival of immatures of Sarcophaga (Liopygia) ruficornis (Fabricius 1794) and Microcerella halli (Engel 1931) (Diptera: Sarcophagidae) reared in different temperatures: 10, 15, 20, 25, 30, and 35 ± 1 °C. Bovine raw ground meat was offered as food for all experimental groups, each consisting of four replicates, in the proportion of 2 g/larva. To measure the evolution of growth, ten specimens of each group were randomly chosen and weighed every 12 h, from initial feeding larva to pupae, and then discarded. Considering the records of weight gain, survival rates, and stability of growth rates, the range of optimum temperature for the development of S. (L.) ruficornis is between 20 and 35 °C, and that of M. halli is between 20 and 25 °C. For both species, the longest times of development were in the lowest temperatures. The survival rate at extreme temperatures (10 and 35 °C) was lower in both species. Biological data such as the ones obtained in this study are of great importance to achieve a more accurate estimate of the PMI.