981 resultados para Recombinant human BMP-7


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To investigate the effects of recombinant human activated protein C (rhAPC) on pulmonary function in acute lung injury (ALI) resulting from smoke inhalation in association with a bacterial challenge. Design: Prospective, randomized, controlled, experimental animal study with repeated measurements. Setting: Investigational intensive care unit at a university hospital. Subjects: Eighteen sheep (37.2 +/- 1.0 kg) were operatively prepared and randomly allocated to either the sham, control, or rhAPC group (n = 6 each). After a tracheotomy had been performed, ALI was produced in the control and rhAPC group by insufflation of 4 sets of 12 breaths of cotton smoke. Then, a 30 mL suspension of live Pseudomonas aeruginosa bacteria (containing 2-5 x 10(11) colony forming units) was instilled into the lungs according to an established protocol. The sham group received only the vehicle, i.e., 4 sets of 12 breaths of room air and instillation of 30 mL normal saline. The sheep were studied in the awake state for 24 hrs and were ventilated with 100% oxygen. RhAPC (24 mu g/kg/hr) was intravenously administered. The infusion was initiated 1 hr post-injury and lasted until the end of the experiment. The animals were resuscitated with Ringer's lactate solution to maintain constant pulmonary artery occlusion pressure. Measurements and Main Results., In comparison with nontreatment in controls, the infusion of rhAPC significantly attenuated the fall in PaO2/FiO(2) ratio (control group values were 521 +/- 22 at baseline [BL], 72 +/- 5 at 12 hrs, and 74 +/- 7 at 24 hrs, vs. rhAPC group values of 541 +/- 12 at BL, 151 +/- 29 at 12 hours [p < .05 vs. control], and 118 +/- 20 at 24 hrs), and significantly reduced the increase in pulmonary microvascular shunt fraction (Qs/Qt; control group at BL, 0.14 +/- 0.02, and at 24 hrs, 0.65 +/- 0.08; rhAPC group at BL, 0.24 +/- 0.04, and at 24 hrs, 0.45 +/- 0.02 [p < .05 vs. control]) and the increase in peak airway pressure (mbar; control group at BL, 20 +/- 1, and at 24 hrs, 36 +/- 4; rhAPC group at BL, 21 +/- 1, and at 24 hrs, 28 +/- 2 [p < .05 vs. control]). In addition, rhAPC limited the increase in lung 3-nitrotyrosine (after 24 hrs [%]: sham, 7 +/- 2; control, 17 +/- 1; rhAPC, 12 +/- 1 [p < .05 vs. control]), a reliable indicator of tissue injury. However, rhAPC failed to prevent lung edema formation. RhAPC-treated sheep showed no difference in activated clotting time or platelet count but exhibited less fibrin degradation products (1/6 animals) than did controls (4/6 animals). Conclusions. Recombinant human activated protein C attenuated ALI after smoke inhalation and bacterial challenge in sheep, without bleeding complications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recombinant human DNase (rhDNase) is an established treatment in cystic fibrosis (CF), but it may liberate cationic mediators bound to DNA in the airways. An alternative mucolytic therapy is hypertonic saline (HS); however, HS may potentiate neutrophilic inflammation. We compared the effect of rhDNase and HS on cationic proinflammatory mediators in CF sputum. In a randomized, crossover trial, 48 children with CF were allocated consecutively to 12 weeks of once-daily 2.5 mg rhDNase, alternate-day 2.5 mg rhDNase, and twice-daily 7% HS. Sputum levels of total interleukin-8 (IL-8), free IL-8, myeloperoxidase, eosinophil cationic protein, and neutrophil elastase (NE) activity were measured before and after each treatment. The change in mediator levels from baseline with daily rhDNase and HS was not significant; however, with alternate-day rhDNase, there was an increase in free IL-8. When changes in mediator levels with daily rhDNase were compared with alternate-day rhDNase and HS, no significant differences were detected. Only changes in NE activity were associated with changes in lung function. In summary, we were unable to show that rhDNase or HS promote airway inflammation in CF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transplantation of pancreatic islets constitutes a promising alternative treatment for type 1 diabetes. However, it is limited by the shortage of organ donors. Previous results from our laboratory have demonstrated beneficial effects of recombinant human prolactin (rhPRL) treatment on beta cell cultures. We therefore investigated the role of rhPRL action in human beta cell survival, focusing on the molecular mechanisms involved in this process. Human pancreatic islets were isolated using an automated method. Islet cultures were pre-treated in the absence or presence of rhPRL and then subjected to serum starvation or cytokine treatment. Beta cells were labelled with Newport green and apoptosis was evaluated using flow cytometry analysis. Levels of BCL2 gene family members were studied by quantitative RT-PCR and western blot. Caspase-8, -9 and -3 activity, as well as nitric oxide production, were evaluated by fluorimetric assays. The proportion of apoptotic beta cells was significantly lowered in the presence of rhPRL under both cell death-induced conditions. We also demonstrated that cytoprotection may involve an increase of BCL2/BAX ratio, as well as inhibition of caspase-8, -9 and -3. Our study provides relevant evidence for a protective effect of lactogens on human beta cell apoptosis. The results also suggest that the improvement of cell survival may involve, at least in part, inhibition of cell death pathways controlled by the BCL2 gene family members. These findings are highly relevant for improvement of the islet isolation procedure and for clinical islet transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have determined the post-translational modifications of the major capsid protein, L1 of human papillomavirus (HPV) type 6b. Since this virus cannot be cultured in the laboratory to obtain sufficient material for a study, a recombinant L1 protein produced in a vaccinia virus expression system was used in this investigation. Our results show that this protein is phosphorylated at serine residues and is also glycosylated. No myristoylation or palmitoylation was detected. The fraction of L1 protein incorporated into virus-like particles was not glycosylated. Since recombinant L1 protein is a potential human vaccine candidate, knowledge of the post-translation modifications of this protein may prove useful for the design of anti-HPV vaccines. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human follicle stimulating hormone is a pituitary glycoprotein that is essential for the maintenance of ovarian follicle development and testicular spermatogenesis. Like other members of the glycoprotein hormone family, it contains a common a subunit and a hormone specific beta subunit. Each subunit contains two glycosylation sites. The specific structures of the oligosaccharides of human follicle stimulating hormone have been shown to influence both the in vitro and in vivo bioactivity. Since the carbohydrate structure of a protein reflects the glycosylation apparatus of the host cells in which the protein is expressed, we examined the isoform profiles, in vitro bioactivity and metabolic clearance of a preparation of purified recombinant human follicle stimulating hormone derived from a stable, transfected Sp2/0 myeloma cell line, and pituitary human follicle stimulating hormone. Isoelectric focussing and chromatofocussing studies of human follicle stimulating hormone preparations both showed a more basic isoform profile for the recombinant human follicle stimulating hormone compared to that of pituitary human follicle stimulating hormone. The recombinant human follicle stimulating hormone had a significantly higher radioreceptor activity compared to that of pituitary human follicle stimulating hormone, consistent with a greater in vitro potency. Pharmacokinetic studies in rats indicated a similar terminal half life (124 min) to that of the pituitary human follicle stimulating hormone (119 min). Preliminary carbohydrate analysis showed recombinant human follicle stimulating hormone to contain high mannose and/or hybrid type, in addition to complex type carbohydrate chains, terminating with both alpha 2,3 and alpha 2,6 linked sialic acids. These results demonstrate that recombinant human follicle stimulating hormone made in the Sp2/0 myeloma cells is sialylated, has a more basic isoform profile, and has a greater in vitro biological potency compared to those of the pituitary human follicle stimulating hormone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: A resorbable collagen matrix with recombinant human bone morphogenetic protein (rhBMP-2) was compared with traditional iliac crest bone graft for the closure of alveolar defects during secondary dental eruption. Methods: Sixteen patients with unilateral cleft lip and palate, aged 8 to 12 years, were selected and randomly assigned to group 1 (rhBMP-2) or group 2 (iliac crest bone graft). Computed tomography was performed to assess both groups preoperatively and at months 6 and 12 postoperatively. Bone height and defect volume were calculated through Osirix Dicom Viewer (Pixmeo, Apple Inc.). Overall morbidity was recorded. Results: Preoperative and follow-up examinations revealed progressive alveolar bone union in all patients. For group 1, final completion of the defect with a 65.0% mean bone height was detected 12 months postoperatively. For group 2, final completion of the defect with an 83.8% mean bone height was detected 6 months postoperatively. Dental eruption routinely occurred in both groups. Clinical complications included significant swelling in three group 1 patients (37.5%) and significant donor-site pain in seven group 2 patients (87.5%). Conclusions: For this select group of patients with immature skeleton, rhBMP-2 therapy resulted in satisfactory bone healing and reduced morbidity compared with traditional iliac crest bone grafting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute mesenteric venous thrombosis is an uncommon condition that is usually treated with systemic anticoagulation. Catheter-directed thrombolysis through the superior mesenteric artery may be a viable adjunct to treat this morbid condition. In the present article, we have described a case of superior mesenteric venous thrombosis treated with catheter-directed infusion of tissue plasminogen activator through the superior mesenteric artery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Levels of recombinant human follicle stimulating hormone (r-hFSH) mRNA expressed under butyrate and zinc treatment were compared in two CHO-K1 derived cell lines. In King cells under the metallothionein promoter, butyrate induced the increase in both r-hFSH productivity (q(FSH)) and mRNA levels proportionally. In the presence of 1 mM butyrate and 40 mu M zinc, a 4-fold increase in q(FSH) and mRNA levels was achieved as compared to zinc (40) alone; this wasa approximately 6 times higher than in serum free medium. In Darren cells under the beta-actin promotor butyrate induced an increase in q(SFH) but not in mRNA levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression of kallikrein 7, a proteolytic enzyme important for epithelial cell shedding, may be causally involved in carcinogenesis, particularly in tumor metastasis and invasion. In this study, we have evaluated hK7 (human kallikrein 7) protein levels by immunohistochemistry in 367 cervical histological samples including 35 cases of cervicitis, 31 low-grade cervical intraepithelial neoplasia, 51 high-grade cervical intraepithelial neoplasia (H-SIL), 197 squamous cervical carcinomas (SCC) and 53 cervical adenocarcinomas. We have observed that hK7 staining increased with the severity of cervical disease. Intense hK7 staining was found in 15.2% of cervicitis samples, in contrast to 55% of H-SIL and 68% of SCC. Moreover, 92.5% of adenocarcinomas also exhibited intense hK7 staining. Differences in the expression of hK7 could potentially be used as a biomarker for the characterization of different stages of cervical disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GH is being used by elite athletes to enhance sporting performance. To examine the hypothesis that exogenous 22-kDa recombinant human GH (rhGH) administration could be detected through suppression of non-22-kDa isoforms of GH, we studied seventeen aerobically trained males (age, 26.9 +/- 1.5 yr) randomized to rhGH or placebo treatment (0.15 IU/kg/day for 1 week). Subjects were studied at rest and in response to exercise (cycle-ergometry at 65% of maximal work capacity for 20 min). Serum was assayed for total GH (Pharmacia IRMA and pituitary GH), 22-kDa GH (2 different 2-site monoclonal immunoassays), non-22-kDa GH (22-kDa GH-exclusion assay), 20-kDa GH, and immunofunctional GH. In the study, 3 h after the last dose of rhGH, total and 22-kDa GH concentrations were elevated, reflecting exogenous 22-kDa GH. Non-22-kDa and 20-kDa GH levels were suppressed. Regression of non-22-kDa or 20-kDa GH against total or 22-kDa GH produced clear separation of treatment groups. In identical exercise studies repeated between 24 and 96 h after cessation of treatment, the magnitude of the responses of all GH isoforms was suppressed (P < 0.01), but the relative proportions were similar to those before treatment. We conclude: 1) supraphysiological doses of rhGH in trained adult males suppressed exercise-stimulated endogenous circulating isoforms of GH for up to 4 days; 2) the dearest separation of treatment groups required the simultaneous presence of high exogenous 22-kDa GH and suppressed 20-kDa or non-22-kDa GH concentrations; and 3) these methods may prove useful in detecting rhGH abuse in athletes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selection, synthesis and chromatographic evaluation of a synthetic affinity adsorbent for human recombinant factor VIIa is described. The requirement for a metal ion-dependent immunoadsorbent step in the purification of the recombinant human clotting factor, FVIIa, has been obviated by using the X-ray crystallographic structure of the complex of tissue factor (TF) and Factor VIIa and has directed our combinatorial approach to select, synthesise and evaluate a rationally-selected affinity adsorbent from a limited library of putative ligands. The selected and optimised ligand comprises a triazine scaffold bis-substituted with 3-aminobenzoic acid and has been shown to bind selectively to FVIIa in a Ca2+-dependent manner. The adsorbent purifies FVIIa to almost identical purity (>99%), yield (99%), activation/degradation profile and impurity content (∼1000 ppm) as the current immunoadsorption process, while displaying a 10-fold higher static capacity and substantially higher reusability and durability. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tamoxifen is a major drug used for adjuvant chemotherapy of breast cancer; however, its use has been associated with a small but significant increase in risk of endometrial cancer. In rats, tamoxifen is a hepatocarcinogen, and DNA adducts have been observed in both rat and human tissues. Tamoxifen has been shown previously to be metabolized to reactive products that have the potential to form protein and DNA adducts. Previous studies have suggested a role for P450 3A4 in protein adduct formation in human liver microsomes, via a catechol intermediate; however, no clear correlation was seen between P450 3A4 content of human liver microsomes and adduct formation. In the present study, we investigated the P450 forms responsible for covalent drug-protein adduct formation and the possibility that covalent adduct formation might occur via alternative pathways to catechol formation. Recombinant P450 3A4 catalyzed adduct formation, and this correlated with the level of uncoupling in the P450 incubation, consistent with a role of reactive oxygen species in potentiating adduct formation after enzymatic formation of the catechol metabolite. Whereas P450s 1AI, 2D6, and 3A5 generated catechol metabolite, no covalent adduct formation was observed with these forms. By contrast, P450 2136, 2C19, and rat liver microsomes catalyzed drug-protein adduct formation but not catechol formation. Drug protein adducts formed specifically with P450 3A4 in incubations using membranes isolated from bacteria expressing P450 3A4 and reductase, as well as in reconstitutions of purified 3A4, suggesting that the electrophilic species reacted preferentially with the P450 enzymes concerned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytochrome P450 (P450)-mediated biotransformation of tamoxifen is important in determining both the clearance of the drug and its conversion to the active metabolite, trans-4-hydroxytamoxifen. Biotransformation by P450 forms expressed extrahepatically, such as in the breast and endometrium, may be particularly important in determining tissue-specific effects of tamoxifen. Moreover, tamoxifen may serve as a useful probe drug to examine the regioselectivity of different forms. Tamoxifen metabolism was investigated in vitro using recombinant human P450s. Forms CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7 were coexpressed in Escherichia coli with recombinant human NADPH-cytochrome P450 reductase. Bacterial membranes were harvested and incubated with tamoxifen or trans-4-hydroxytamoxifen under conditions supporting P450-mediated catalysis. CYP2D6 was the major catalyst of 4-hydroxylation at low tamoxifen concentrations (170 +/- 20 pmol/40 min/0.2 nmol P450 using 18 muM tamoxifen), but CYP2B6 showed significant activity at high substrate concentrations (28.1 +/- 0.8 and 3.1 +/- 0.5 nmol/120 min/0.2 nmol P450 for CYP2D6 and CYP2B6, respectively, using 250 muM tamoxifen). These two forms also catalyzed 4'-hydroxylation (13.0 +/- 1.9 and 1.4 +/- 0.1 nmol/120 min/0.2 nmol P450, respectively, for CYP2B6 and CYP2D6 at 250 muM tamoxifen; 0.51 +/- 0.08 pmol/40 min/0.2 nmol P450 for CYP2B6 at 18 muM tamoxifen). Tamoxifen N-demethylation was mediated by CYP2D6, 1A1, 1A2, and 3A4, at low substrate concentrations, with contributions by CYP1B1, 2C9, 2C19 and 3A5 at high concentrations. CYP1B1 was the principal catalyst of 4-hydroxytamoxifen trans-cis isomerization but CYP2B6 and CYP2C19 also contributed.