989 resultados para Receptors, Androgen -- metabolism


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Prostate cancer is the second most common cause of cancer-associated deaths in men, and signaling via a transcription factor called androgen receptor (AR) is an important driver of the disease. Consequently, AR target genes are prominent candidates to be specific for prostate cancer and also important for the survival of the cancer cells. Here we assess the levels of all hexosamine biosynthetic pathway (HBP) enzymes in 15 separate clinical gene expression data sets and identify the last enzyme in the pathway, UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1), to be highly overexpressed in prostate cancer. We analyzed 3261 prostate cancers on a tissue microarray and found that UAP1 staining correlates negatively with Gleason score (P=0.0039) and positively with high AR expression (P<0.0001). Cells with high UAP1 expression have 10-fold increased levels of the HBP end-product, UDP-N-acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is essential for N-linked glycosylation occurring in the endoplasmic reticulum (ER) and high UAP1 expression associates with resistance against inhibitors of N-linked glycosylation (tunicamycin and 2-deoxyglucose) but not with a general ER stress-inducing agent, the calcium ionophore A23187. Knockdown of UAP1 expression re-sensitized cells towards inhibitors of N-linked glycosylation, as measured by proliferation and activation of ER stress markers. Taken together, we have identified an enzyme, UAP1, which is highly overexpressed in prostate cancer and protects cancer cells from ER stress conferring a growth advantage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Castrate-resistant prostate cancer (CRPC) is poorly characterized and heterogeneous and while the androgen receptor (AR) is of singular importance, other factors such as c-Myc and the E2F family also play a role in later stage disease. HES6 is a transcription co-factor associated with stem cell characteristics in neural tissue. Here we show that HES6 is up-regulated in aggressive human prostate cancer and drives castration-resistant tumour growth in the absence of ligand binding by enhancing the transcriptional activity of the AR, which is preferentially directed to a regulatory network enriched for transcription factors such as E2F1. In the clinical setting, we have uncovered a HES6-associated signature that predicts poor outcome in prostate cancer, which can be pharmacologically targeted by inhibition of PLK1 with restoration of sensitivity to castration. We have therefore shown for the first time the critical role of HES6 in the development of CRPC and identified its potential in patient-specific therapeutic strategies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metabolic disruptions that occur widely in cancers offer an attractive focus for generalized treatment strategies. The hexosamine biosynthetic pathway (HBP) senses metabolic status and produces an essential substrate for O-linked β-N-acetylglucosamine transferase (OGT), which glycosylates and thereby modulates the function of its target proteins. Here, we report that the HBP is activated in prostate cancer cells and that OGT is a central regulator of c-Myc stability in this setting. HBP genes were overexpressed in human prostate cancers and androgen regulated in cultured human cancer cell lines. Immunohistochemical analysis of human specimens (n = 1987) established that OGT is upregulated at the protein level and that its expression correlates with high Gleason score, pT and pN stages, and biochemical recurrence. RNA interference-mediated siliencing or pharmacologic inhibition of OGT was sufficient to decrease prostate cancer cell growth. Microarray profiling showed that the principal effects of OGT inhibition in prostate cancer cells were related to cell-cycle progression and DNA replication. In particular, c-MYC was identified as a candidate upstream regulator of OGT target genes and OGT inhibition elicited a dose-dependent decrease in the levels of c-MYC protein but not c-MYC mRNA in cell lines. Supporting this relationship, expression of c-MYC and OGT was tightly correlated in human prostate cancer samples (n = 1306). Our findings identify HBP as a modulator of prostate cancer growth and c-MYC as a key target of OGT function in prostate cancer cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chromatin immunoprecipitation (ChIP) allows enrichment of genomic regions which are associated with specific transcription factors, histone modifications, and indeed any other epitopes which are present on chromatin. The original ChIP methods used site-specific PCR and Southern blotting to confirm which regions of the genome were enriched, on a candidate basis. The combination of ChIP with genomic tiling arrays (ChIP-chip) allowed a more unbiased approach to map ChIP-enriched sites. However, limitations of microarray probe design and probe number have a detrimental impact on the coverage, resolution, sensitivity, and cost of whole-genome tiling microarray sets for higher eukaryotes with large genomes. The combination of ChIP with high-throughput sequencing technology has allowed more comprehensive surveys of genome occupancy, greater resolution, and lower cost for whole genome coverage. Herein, we provide a comparison of high-throughput sequencing platforms and a survey of ChIP-seq analysis tools, discuss experimental design, and describe a detailed ChIP-seq method.Chromatin immunoprecipitation (ChIP) allows enrichment of genomic regions which are associated with specific transcription factors, histone modifications, and indeed any other epitopes which are present on chromatin. The original ChIP methods used site-specific PCR and Southern blotting to confirm which regions of the genome were enriched, on a candidate basis. The combination of ChIP with genomic tiling arrays (ChIP-chip) allowed a more unbiased approach to map ChIP-enriched sites. However, limitations of microarray probe design and probe number have a detrimental impact on the coverage, resolution, sensitivity, and cost of whole-genome tiling microarray sets for higher eukaryotes with large genomes. The combination of ChIP with high-throughput sequencing technology has allowed more comprehensive surveys of genome occupancy, greater resolution, and lower cost for whole genome coverage. Herein, we provide a comparison of high-throughput sequencing platforms and a survey of ChIP-seq analysis tools, discuss experimental design, and describe a detailed ChIP-seq method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Androgen and androgen receptors (AR) play critical roles in the proliferation of prostate cancer through transcriptional regulation of target genes. Here, we found that androgens upregulated the expression of dynamin-related protein 1 (Drp1), which is involved in the induction of mitochondrial fission, a common event in mitosis and apoptosis. Clinical tissue samples and various prostate cancer cell lines revealed a positive correlation between Drp1 and AR levels. Treatment of androgen-sensitive cells with an AR agonist, R1881, and antagonist, bicalutamide, showed that Drp1 is transcriptionally regulated by androgens, as confirmed by an AR ChIP-seq assay. Live imaging experiments using pAcGFP1-Mito stably transfected LNCaP (mito-green) cells revealed that androgen did not induce significant mitochondrial fission by itself, although Drp1 was upregulated. However, when treated with CGP37157 (CGP), an inhibitor of mitochondrial Ca²⁺ efflux, these cells exhibited mitochondrial fission, which was further enhanced by pretreatment with R1881, suggesting that androgen-induced Drp1 expression facilitated CGP-induced mitochondrial fission. This enhanced mitochondrial fission was correlated with increased apoptosis. Transfection with dominant-negative (DN-Drp1, K38A) rescued cells from increased apoptosis, confirming the role of androgen-induced Drp1 in the observed apoptosis with combination treatment. Furthermore, we found that CGP reduced the expression of Mfn1, a protein that promotes mitochondrial fusion, a process which opposes fission. We suggest that androgen-increased Drp1 enhanced mitochondrial fission leading to apoptosis. The present study shows a novel role for androgens in the regulation of mitochondrial morphology that could potentially be utilized in prostate cancer therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CD8 T cells play a key role in mediating protective immunity against selected pathogens after vaccination. Understanding the mechanism of this protection is dependent upon definition of the heterogeneity and complexity of cellular immune responses generated by different vaccines. Here, we identify previously unrecognized subsets of CD8 T cells based upon analysis of gene-expression patterns within single cells and show that they are differentially induced by different vaccines. Three prime-boost vector combinations encoding HIV Env stimulated antigen-specific CD8 T-cell populations of similar magnitude, phenotype, and functionality. Remarkably, however, analysis of single-cell gene-expression profiles enabled discrimination of a majority of central memory (CM) and effector memory (EM) CD8 T cells elicited by the three vaccines. Subsets of T cells could be defined based on their expression of Eomes, Cxcr3, and Ccr7, or Klrk1, Klrg1, and Ccr5 in CM and EM cells, respectively. Of CM cells elicited by DNA prime-recombinant adenoviral (rAd) boost vectors, 67% were Eomes(-) Ccr7(+) Cxcr3(-), in contrast to only 7% and 2% stimulated by rAd5-rAd5 or rAd-LCMV, respectively. Of EM cells elicited by DNA-rAd, 74% were Klrk1(-) Klrg1(-)Ccr5(-) compared with only 26% and 20% for rAd5-rAd5 or rAd5-LCMV. Definition by single-cell gene profiling of specific CM and EM CD8 T-cell subsets that are differentially induced by different gene-based vaccines will facilitate the design and evaluation of vaccines, as well as enable our understanding of mechanisms of protective immunity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Prognosis of early breast cancer patients is significantly improved with the use of adjuvant therapies. Various guidelines have been proposed to select patients who will derive the most benefit from such treatments. However, classifications have limited usefulness in subsets of patients such as those with node negative breast cancer. The 2007 St. Paul de Vence Clinical Practice Recommendations proposed to consider adjuvant therapy in accordance with the 10-year relapse-free survival reduction estimated by Adjuvant! Online. However, many limitations remain regarding the use of Adjuvant! Online. Among them, adverse prognostic and/or predictive factors such as vascular invasion, mitotic activity, progesterone receptor negativity, and HER-2 expression are not incorporated in the routine clinical decision process. Our group has therefore issued guidelines based on the consideration of both Adjuvant! Online calculations and the prognostic and/or predictive effects of these markers. In addition, web-accessible comprehensive tables summarizing these recommendations are provided.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The E3 ubiquitin ligase NEDD4-2 (encoded by the Nedd4L gene) regulates the amiloride-sensitive epithelial Na+ channel (ENaC/SCNN1) to mediate Na+ homeostasis. Mutations in the human β/γENaC subunits that block NEDD4-2 binding or constitutive ablation of exons 6-8 of Nedd4L in mice both result in salt-sensitive hypertension and elevated ENaC activity (Liddle syndrome). To determine the role of renal tubular NEDD4-2 in adult mice, we generated tetracycline-inducible, nephron-specific Nedd4L KO mice. Under standard and high-Na+ diets, conditional KO mice displayed decreased plasma aldosterone but normal Na+/K+ balance. Under a high-Na+ diet, KO mice exhibited hypercalciuria and increased blood pressure, which were reversed by thiazide treatment. Protein expression of βENaC, γENaC, the renal outer medullary K+ channel (ROMK), and total and phosphorylated thiazide-sensitive Na+Cl- cotransporter (NCC) levels were increased in KO kidneys. Unexpectedly, Scnn1a mRNA, which encodes the αENaC subunit, was reduced and proteolytic cleavage of αENaC decreased. Taken together, these results demonstrate that loss of NEDD4-2 in adult renal tubules causes a new form of mild, salt-sensitive hypertension without hyperkalemia that is characterized by upregulation of NCC, elevation of β/γENaC, but not αENaC, and a normal Na+/K+ balance maintained by downregulation of ENaC activity and upregulation of ROMK.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The feline immunodeficiency virus (FIV) targets activated CD4-positive helper T cells preferentially, inducing an AIDS-like immunodeficiency in its natural host species, the domestic cat. The primary receptor for FIV is CD134, a member of the tumour necrosis factor receptor superfamily (TNFRSF) and all primary viral strains tested to date use CD134 for infection. To investigate the effect of the natural ligand for CD134 on FIV infection, feline CD134L was cloned and expressed in soluble forms. However, in contrast to murine or human CD134L, soluble feline CD134L (sCD134L) did not bind to CD134. Receptor-binding activity was restored by enforced covalent trimerisation following the introduction of a synthetic trimerisation domain from tenascin (TNC). Feline and human TNC-CD134Ls retained the species-specificity of the membrane-bound forms of the ligand while murine TNC-CD134L displayed promiscuous binding to feline, human or murine CD134. Feline and murine TNC-CD134Ls were antagonists of FIV infection; however, potency was both strain-specific and substrate-dependent, indicating that the modulatory effects of endogenous sCD134L, or exogenous CD134Lbased therapeutics, may vary depending on the viral strain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main regulators of leukocyte trafficking during inflammatory responses are chemokines. However, another class of recently identified chemotactic agents is extracellular cyclophilins, the proteins mostly known as receptors for the immunosuppressive drug, cyclosporine A. Cyclophilins can induce leukocyte chemotaxis in vitro and have been detected at elevated levels in inflamed tissues, suggesting that they might contribute to inflammatory responses. We recently identified CD147 as the main signaling receptor for cyclophilin A. In the current study we examined the contribution of cyclophilin-CD147 interactions to inflammatory responses in vivo using a mouse model of acute lung injury. Blocking cyclophilin-CD147 interactions by targeting CD147 (using anti-CD147 Ab) or cyclophilin (using nonimmunosuppressive cyclosporine A analog) reduced tissue neutrophilia by up to 50%, with a concurrent decrease in tissue pathology. These findings are the first to demonstrate the significant contribution of cyclophilins to inflammatory responses and provide a potentially novel approach for reducing inflammation-mediated diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The arenavirus Lassa virus (LASV) causes a severe haemorrhagic fever with high mortality in man. The cellular receptor for LASV is dystroglycan (DG). DG is a ubiquitous receptor for extracellular matrix (ECM) proteins, which cooperates with β1 integrins to control cell-matrix interactions. Here, we investigated whether LASV binding to DG triggers signal transduction, mimicking the natural ligands. Engagement of DG by LASV resulted in the recruitment of the adaptor protein Grb2 and the protein kinase MEK1 by the cytoplasmic domain of DG without activating the MEK/ERK pathway, indicating assembly of an inactive signalling complex. LASV binding to cells however affected the activation of the MEK/ERK pathway via α6β1 integrins. The virus-induced perturbation of α6β1 integrin signalling critically depended on high-affinity LASV binding to DG and DG's cytoplasmic domain, indicating that LASV-receptor binding perturbed signalling cross-talk between DG and β1 integrins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La grossesse induit de profonds changements hémodynamiques et métaboliques de l’organisme maternel qui ont des conséquences sur le cœur. L’adaptation du cœur à cette condition physiologique nécessite un remodelage de sa structure et par conséquent des ajustements de sa fonction. Les mécanismes responsables de ces adaptations sont en grande partie inconnus. Cependant, ces connaissances sont essentielles pour la compréhension des complications cardiovasculaires, telle que l’hypertension gestationnelle (HG), qui constituent un risque pour la santé de la mère et du fœtus. Afin de caractériser les adaptations du cœur lors de la grossesse, l’originalité de notre approche expérimentale consistait à étudier le remodelage à l’échelle des cardiomyocytes du ventricule gauche. Ainsi, notre premier objectif était de déterminer les modifications structurales et fonctionnelles des cardiomyocytes chez la rate en vue d’identifier les altérations lors de l’HG. Chez les rates gestantes, le remodelage structural des cardiomyocytes se caractérise par une hypertrophie cellulaire avec une augmentation proportionnelle des dimensions. L’HG a été induite par un supplément sodique (0.9% NaCl) dans la diète. L’inadaptation structurale lors de l’HG se traduit par une diminution du volume cellulaire. L’étude des modifications fonctionnelles a révélé que lors de la gestation le fonctionnement contractile des cellules est dépendant de l’adaptation du métabolisme maternel. En effet, les substrats énergétiques, lactate et pyruvate, induisent une augmentation de la contractilité des cardiomyocytes. Cet effet est plus faible dans les cellules des rates hypertendues, ce qui suggère des anomalies du couplage excitation-contraction, dans lequel les courants calciques de type L (ICa-L) jouent un rôle important. Paradoxalement, le lactate et le pyruvate ont induit une augmentation de la densité des courants ICa-L seulement chez les rates hypertendues. Le récepteur aux minéralocorticoïdes (RM) est connu pour son implication dans le remodelage structuro-fonctionnel du cœur dans les conditions pathologiques mais pas dans celui induit par la grossesse. Notre deuxième objectif était donc de déterminer le rôle du RM dans l’adaptation de la morphologie et de la contractilité des cardiomyocytes. Des rates gestantes ont été traitées avec le canrénoate de potassium (20 mg/kg/jr), un antagoniste des RM. L’inhibition des RM pendant la gestation empêche l’hypertrophie cellulaire. De plus, l’inhibition des RM bloque l’effet du lactate et du pyruvate sur la contractilité. Chez la femme, la grossesse est associée à des changements des propriétés électriques du cœur. Sur l’électrocardiogramme, l’intervalle QTc est plus long, témoignant de la prolongation de la repolarisation. Les mécanismes régulant cette adaptation restent encore inconnus. Ainsi, notre troisième objectif était de déterminer le rôle du RM dans l’adaptation de la repolarisation. Chez la rate gestante, l’intervalle QTc est prolongé ce qui est corroboré par la diminution des courants potassiques Ito et IK1. L’inhibition des RM pendant la gestation empêche la prolongation de l’intervalle QTc et la diminution des courants Ito. Les travaux exposés dans cette thèse apportent une vision plus précise du remodelage cardiaque induit par la grossesse, qui est permise par l’étude à l’échelle cellulaire. Nos résultats montrent que lors de la gestation et de l’HG les cardiomyocytes subissent des remodelages morphologiques contrastés. Notre étude a aussi révélé que lors de la gestation, la fonction contractile est tributaire des adaptations métaboliques et que cette relation est altérée lors de l’HG. Nos travaux montrent que la régulation de ces adaptations gestationnelles fait intervenir le RM au niveau de la morphologie, de la relation métabolisme/fonctionnement contractile et de la repolarisation. En faisant avancer les connaissances sur l’hypertrophie de la grossesse, ces travaux vont permettre d’améliorer la compréhension des complications cardiovasculaires gestationnelles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

N-Ethylcarboxamidoadenosine (12) was synthesised from adenosine (1) and the 6-chloro-2’,3’-O-isopropylidene-AT-ethylcarboxamidoadenosine (25) was synthesised from inosine (19). Employing molecular modelling techniques and the results from previous structure activity relationships it was possible to design and synthesise a N6-substituted N-ethylcarboxamidoadenosines which possessed an oxygen in the N6-substituent either in the form of an epoxide (which was obtained by cpoxidising an alkene with m-CPBA or dimethyldioxirane) or in the form of a cyclic ether as was the case for N6-((tetrahydro-2H--pyran--2-yl)methyl-N-ethylcarboxamidoadenosine (78). These compounds were tested for their biological activity at the A1 adenosine receptor by their ability to inhibit cAMP accumulation in DDT, MF2 cells. The EC50 values obtained indicated that the N6-(norborn-5-en-2-yl)-N-ethylcarboxamidoadenosines were the most potent. Of theseN6-(S-endo-norbrn-5-en-2-yI)-N-ethylcarboxaniidoadenosine (56) was the most potent (0.2 nM). N6-(exo-norborn-5-en-2-yl)-2-iodo-N-ethylcarboxamidoadenosine (79) was synthesised from guanosine (22) and was also evaluated for its potency at the A, receptor (24.8 ± 1.5 nM). At present 79 is being evaluated for its selectivity for the A1 receptor compared to the other three receptor subtypes (A2a, A2b, A3). A series of N6-(benzyl)-N-ethylcarboxamidoadenosines were synthesised with substitutions at the 4-position of the phenyl ring. Another series of compounds were synthesised which replaced the methylene spacer between the N6H and the N6-aromatic or lipophilic substituent The replacement groups -were carbonyl and trans-2- cyclopropyl moieties. The N6-acyl compounds were obtained by reacting 2’,3’-O- di(tert-butyldimethylsilyl)-AT-ethylcarboxamidoadenosinc (59) with the appropriate acid chloride and then deprotecting with lelrabutylammonium fluoride in tetrahydrofuran. The compound N6-(4-(1,2-dihydroxy)ethyl)benzyl-N- ethylcarboxamidoadenosine (125) was synthesised by the reaction of 4-(1,2-0- isopropylidene-ethyl)benzyl aminc (123) with 6-chloro-2,3-0-isopropylidene-N- ethylcarboxamidoadenosine (25). Compound 123 was synthesised from an epoxidation of vinylbenzyl phthalimide (118) followed by an acidic ring opening to yield the diol which was isopropylidenated to yield 4-(l,2-O-isopropylidene- elhyl)benzyl phlhalimide (122), It was hoped that the presence of the diol functionality in 125 would increase water solubility whilst maintaining potency at the A3 receptor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Previous reports into the role of [CAG]n repeat lengths in the androgen receptor (AR) gene indicate that these may play an important part in the development and progression of breast cancer, however, knowledge regarding benign breast lesions is limited. Patients and Methods: PCR-based GeneScan analysis was used to investigate the [CAG]n repeat length at exon 1 of the AR gene in 59 benign breast lesions (27 fibroadenomas, 18 atypical hyperplasias, and 14 hyperplasias without atypia) and 54 ductal breast carcinomas. Seventy-two cancer-free women were used as a control group. In addition, [CAG]n repeats were evaluated for the presence of loss of heterozygosity (LOH) and microsatellite instability (MSI) in a subset of these samples (27 fibroadenomas, 14 hyperplasias without atypia and 22 breast carcinomas). Results: Shorter [CAG]n repeat lengths were strongly correlated with atypical hyperplasias (p=0.0209) and carcinomas (p<0.0001). LOH was found in 1/12 and 4/20 informative cases of hyperplasias without atypia and breast carcinomas, respectively. Three patients with breast carcinoma who had previously presented atypical hyperplasia showed a reduction in the [CAG]n repeat length in their carcinomas. Conclusion: Short [CAG]n repeat length (≤20) polymorphisms are strongly associated with breast carcinomas and atypical hyperplasias. Although non-significant, a subgroup of patients with breast carcinoma and genotype SS showed an association with parameters of worse outcome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the effects of angiotensin receptors antagonists, arginine vasopressin receptor antagonist, L-arginine and L-NAME, injected into supraoptic nucleus of the hypothalamus (SON) on sodium intake induced by the injection of angiotensin II (ANGII). Holtzman rats weighing 200-250 g with canulae implanted into the SON were used. The drugs were injected in 0.5 μL over 30-60 sec. Sodium intake after injection of saline SAL+SAL 0.15 M NaCl was 0.10±00.1 mL 2 h -1; SAL+ANGII injected into SON increased sodium intake. Losartan injected prior to ANGII into SON decreased sodium intake induced by ANGII. PD123319 injected prior to ANGII produced no changes in sodium intake induced by ANGII. AVPA receptor V 1 antagonist injected prior to ANGII reduced sodium intake with a less intensity than losartan. L-arginine injected prior to ANGII decreases sodium intake at a same intensity than losartan. L-NAME injected prior to ANGII potentiated sodium intake induced by ANGII. Losartan injected simultaneously with L-arginine prior to ANGII blocked the natriorexigenic effect of ANGII. These results confirm the importance of SON in the control of sodium intake. Also suggest that both AT 1 and arginine vasopressin V 1 receptors interact with nitrergic pathways within the SON influencing the sodium metabolism by changing sodium appetite induced by ANGII. © 2007 Asian Network for Scientific Information.