997 resultados para Receptor Dimerization
Resumo:
The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor that binds to diverse ligands and initiates a downstream proinflammatory signaling cascade. RAGE activation has been linked to diabetic complications, Alzheimer disease, infections, and cancers. RAGE is known to mediate cell signaling and downstream proinflammatory gene transcription activation, although the precise mechanism surrounding receptor-ligand interactions is still being elucidated. Recent fluorescence resonance energy transfer evidence indicates that RAGE may form oligomers on the cell surface and that this could be related to signal transduction. To investigate whether RAGE forms oligomers, protein-protein interaction assays were carried out. Here, we demonstrate the interaction between RAGE molecules via their N-terminal V domain, which is an important region involved in ligand recognition. By protein cross-linking using water-soluble and membrane-impermeable cross-linker bis(sulfosuccinimidyl) suberate and nondenaturing gels, we show that RAGE forms homodimers at the plasma membrane, a process potentiated by S100B and advanced glycation end products. Soluble RAGE, the RAGE inhibitor, is also capable of binding to RAGE, similar to V peptide, as shown by surface plasmon resonance. Incubation of cells with soluble RAGE or RAGE V domain peptide inhibits RAGE dimerization, subsequent phosphorylation of intracellular MAPK proteins, and activation of NF-kappa B pathways. Thus, the data indicate that dimerization of RAGE represents an important component of RAGE-mediated cell signaling.
Resumo:
The t(15;17) chromosomal translocation, specific for acute promyelocytic leukemia (APL), fuses the PML gene to the retinoic acid receptor alpha (RAR alpha) gene, resulting in expression of a PML-RAR alpha hybrid protein. In this report, we analyzed the nature of PML-RAR alpha-containing complexes in nuclear protein extracts of t(15;17)-positive cells. We show that endogenous PML-RAR alpha can bind to DNA as a homodimer, in contrast to RAR alpha that requires the retinoid X receptor (RXR) dimerization partner. In addition, these cells contain oligomeric complexes of PML-RAR alpha and endogenous RXR. Treatment with retinoic acid results in a decrease of PML-RAR alpha protein levels and, as a consequence, of DNA binding by the different complexes. Using responsive elements from various hormone signaling pathways, we show that PML-RAR alpha homodimers have altered DNA-binding characteristics when compared to RAR alpha-RXR alpha heterodimers. In transfected Drosophila SL-3 cells that are devoid of endogenous retinoid receptors PML-RAR alpha inhibits transactivation by RAR alpha-RXR alpha heterodimers in a dominant fashion. In addition, we show that both normal retinoid receptors and the PML-RAR alpha hybrid bind and activate the peroxisome proliferator-activated receptor responsive element from the Acyl-CoA oxidase gene, indicating that retinoids and peroxisome proliferator receptors may share common target genes. These properties of PML-RAR alpha may contribute to the transformed phenotype of APL cells.
Resumo:
The activation of CD40 on B cells, macrophages, and dendritic cells by its ligand CD154 (CD40L) is essential for the development of humoral and cellular immune responses. CD40L and other TNF superfamily ligands are noncovalent homotrimers, but the form under which CD40 exists in the absence of ligand remains to be elucidated. Here, we show that both cell surface-expressed and soluble CD40 self-assemble, most probably as noncovalent dimers. The cysteine-rich domain 1 (CRD1) of CD40 participated to dimerization and was also required for efficient receptor expression. Modelization of a CD40 dimer allowed the identification of lysine 29 in CRD1, whose mutation decreased CD40 self-interaction without affecting expression or response to ligand. When expressed alone, recombinant CD40-CRD1 bound CD40 with a KD of 0.6 μm. This molecule triggered expression of maturation markers on human dendritic cells and potentiated CD40L activity. These results suggest that CD40 self-assembly modulates signaling, possibly by maintaining the receptor in a quiescent state.
Resumo:
G-protein-coupled receptors (GPCRs) represent the largest family of receptors involved in transmembrane signaling. Although these receptors were generally believed to be monomeric entities, accumulating evidence supports the presence of GPCRs in multimeric forms. Here, using immunoprecipitation as well as time-resolved fluorescence resonance energy transfer to assess protein-protein interactions in living cells, we unambiguously demonstrate the occurrence of dimerization of the human histamine H-1 receptor. We also show the presence of domain-swapped H-1 receptor dimers in which there is the reciprocal exchange of transmembrane domain TM domains 6 and 7 between the receptors present in the dimer. Mutation of aspartate(107) in transmembrane (TM) 3 or phenylalanine(432) in TM6 to alanine results in two radioligand-binding-deficient mutant H-1 receptors. Coexpression of H-1 D(107)A and H-1 F(432)A, however, results in a reconstituted radioligand binding site that exhibits a pharmacological profile that corresponds to the wildtype H-1 receptor. Interestingly, the H-1 receptor radioligands [H-3] mepyramine and [H-3]-(-)- trans-1-phenyl-3-N, N-dimethylamino-1,2,3,4-tetrahydronaphthalene show differential saturation binding values (B-max) for wild-type H-1 receptors but not for the radioligand binding site that is formed upon coexpression of H-1 D(107)A and H-1 F(432)A receptors, suggesting the presence of different H-1 receptor populations.
Resumo:
CLEC-2 is a member of new family of C-type lectin receptors characterized by a cytosolic YXXL downstream of three acidic amino acids in a sequence known as a hemITAM (hemi-immunoreceptor tyrosine-based activation motif). Dimerization of two phosphorylated CLEC-2 molecules leads to recruitment of the tyrosine kinase Syk via its tandem SH2 domains and initiation of a downstream signaling cascade. Using Syk-deficient and Zap-70-deficient cell lines we show that hemITAM signaling is restricted to Syk and that the upstream triacidic amino acid sequence is required for signaling. Using surface plasmon resonance and phosphorylation studies, we demonstrate that the triacidic amino acids are required for phosphorylation of the YXXL. These results further emphasize the distinct nature of the proximal events in signaling by hemITAM relative to ITAM receptors.
Resumo:
The C-type lectin receptor CLEC-2 activates platelets through Src and Syk tyrosine kinases, leading to tyrosine phosphorylation of downstream adapter proteins and effector enzymes, including phospholipase-C gamma2. Signaling is initiated through phosphorylation of a single conserved tyrosine located in a YxxL sequence in the CLEC-2 cytosolic tail. The signaling pathway used by CLEC-2 shares many similarities with that used by receptors that have 1 or more copies of an immunoreceptor tyrosine-based activation motif, defined by the sequence Yxx(L/I)x(6-12)Yxx(L/I), in their cytosolic tails or associated receptor chains. Phosphorylation of the conserved immunoreceptor tyrosine-based activation motif tyrosines promotes Syk binding and activation through binding of the Syk tandem SH2 domains. In this report, we present evidence using peptide pull-down studies, surface plasmon resonance, quantitative Western blotting, tryptophan fluorescence measurements, and competition experiments that Syk activation by CLEC-2 is mediated by the cross-linking through the tandem SH2 domains with a stoichiometry of 2:1. In support of this model, cross-linking and electron microscopy demonstrate that CLEC-2 is present as a dimer in resting platelets and converted to larger complexes on activation. This is a unique mode of activation of Syk by a single YxxL-containing receptor.
Resumo:
Thyroid hormone receptors (TRs) are ligand-gated transcription factors with critical roles in development and metabolism. Although x-ray structures of TR ligand-binding domains (LBDs) with agonists are available, comparable structures without ligand (apo-TR) or with antagonists are not. It remains important to understand apo-LBD conformation and the way that it rearranges with ligands to develop better TR pharmaceuticals. In this study, we conducted hydrogen/deuterium exchange on TR LBDs with or without agonist (T 3) or antagonist (NH3). Both ligands reduce deuterium incorporation into LBD amide hydrogens, implying tighter overall folding of the domain. As predicted, mass spectroscopic analysis of individual proteolytic peptides after hydrogen/ deuterium exchange reveals that ligand increases the degree of solvent protection of regions close to the buried ligand-binding pocket. However, there is also extensive ligand protection of other regions, including the dimer surface at H10-H11, providing evidence for allosteric communication between the ligand-binding pocket and distant interaction surfaces. Surprisingly, Cterminal activation helix H12, which is known to alter position with ligand, remains relatively protected from solvent in all conditions suggesting that it is packed against the LBD irrespective of the presence or type of ligand. T 3, but not NH3, increases accessibility of the upper part of H3-H5 to solvent, and we propose that TR H12 interacts with this region in apo-TR and that this interaction is blocked by T 3 but not NH3.Wepresent data from site-directed mutagenesis experiments and molecular dynamics simulations that lend support to this structural model of apo-TR and its ligand-dependent conformational changes. (Molecular Endocrinology 25: 15-31, 2011). Copyright © 2011 by The Endocrine Society.
Resumo:
Ferrao FM, Lara LS, Axelband F, Dias J, Carmona AK, Reis RI, Costa-Neto CM, Vieyra A, Lowe J. Exposure of luminal membranes of LLC-PK1 cells to ANG II induces dimerization of AT(1)/AT(2) receptors to activate SERCA and to promote Ca2+ mobilization. Am J Physiol Renal Physiol 302: F875-F883, 2012. First published January 4, 2012; doi:10.1152/ajprenal.00381.2011.-ANG II is secreted into the lumens of proximal tubules where it is also synthesized, thus increasing the local concentration of the peptide to levels of potential physiological relevance. In the present work, we studied the effect of ANG II via the luminal membranes of LLC-PK1 cells on Ca2+-ATPase of the sarco(endo) plasmic reticulum (SERCA) and plasma membrane (PMCA). ANG II (at concentrations found in the lumen) stimulated rapid (30 s) and persistent (30 min) SERCA activity by more than 100% and increased Ca2+ mobilization. Pretreatment with ANG II for 30 min enhanced the ANG II-induced Ca2+ spark, demonstrating a positively self-sustained stimulus of Ca2+ mobilization by ANG II. ANG II in the medium facing the luminal side of the cells decreased with time with no formation of metabolites, indicating peptide internalization. ANG II increased heterodimerization of AT(1) and AT(2) receptors by 140%, and either losartan or PD123319 completely blocked the stimulation of SERCA by ANG II. Using the PLC inhibitor U73122, PMA, and calphostin C, it was possible to demonstrate the involvement of a PLC -> DAG(PMA)-> PKC pathway in the stimulation of SERCA by ANG II with no effect on PMCA. We conclude that ANG II triggers SERCA activation via the luminal membrane, increasing the Ca2+ stock in the reticulum to ensure a more efficient subsequent mobilization of Ca2+. This first report on the regulation of SERCA activity by ANG II shows a new mechanism for Ca2+ homeostasis in renal cells and also for regulation of Ca2+-modulated fluid reabsorption in proximal tubules.
Resumo:
Interleukin-2 (IL-2) is a major T cell growth factor and plays an essential role in the development of normal immune responses. The Janus kinases (Jaks) and Signal transducers and activators of transcription (Stats) are critical for transducing signals from the IL-2 receptors (IL2Rs) to the nucleus to control cell growth and differentiation. In recent years there has been increasing evidence to indicate that the IL-2 activated Jak3/Stat5 pathway provides a new molecular target for immune suppression. Thus, understanding the regulation of this effector cascade has important therapeutic potential.^ One objective of this work was to identify and define the role and molecular mechanism of novel phosphorylation sites in Jak3. Using functional proteomics, three novel Jak3 phosphorylation sites, Y904, Y939 and S574 were identified. Phosphospecific antibodies confirmed that phosphorylation of Y904 and Y939 were mediated by IL-2 and other IL-2 family cytokines in distinct cell types. Biochemical analysis demonstrated that phosphorylation of both Y904 and Y939 positively regulated Jak3 enzymatic activity, while phosphorylation of S574 did not affect Jak3 in vitro kinase activity. However, a gain-of-function mutation of S574 in Jak3 abrogated IL-2 mediated Stat5 activation, suggesting that phosphorylation of this residue might serve a negative role to attenuate IL-2 signaling. Furthermore, mechanistic analysis suggested that phosphorylation of Y904 in Jak3 affects the KmATP of Jak3, while phosphorylation of Y939 in Jak3 was required to bind one of its substrates, Stat5.^ The second objective was to determine the role of serine/threonine phosphatases in the regulation of the IL2R complex. Activation of Jak3 and Stat5 by IL-2 is a transient event mediated by phosphorylation. Using a specific PP1/PP2A inhibitor, we observed that inhibition of PP1/PP2A negatively regulated the IL-2 activated Jak3/Stat5 signaling pathway in a human NK cell line (YT) and primary human T cells. More importantly, coimmunoprecipitation assays indicated that inhibition of PP1/PP2A blocked the formation of an active IL2R complex. Pretreatment of cells with the inhibitor also reduced the electrophoretic mobility of the IL2Rβ and IL2Rγ subunits in YT cells, suggesting that inhibition of PP1/PP2A directly or indirectly regulates undefined serine/threonine kinases which phosphorylate these proteins. Based on these observations, a model has emerged that serine/threonine phosphorylation of the IL2Rβ and IL2Rγ subunits causes a conformational change of these proteins, which disrupts IL2R dimerization and association of Jak3 and Stat5 to these receptors.^
Resumo:
Vascular endothelial growth factor (VEGF) is a homodimeric member of the cystine knot family of growth factors, with limited sequence homology to platelet-derived growth factor (PDGF) and transforming growth factor β2 (TGF-β). We have determined its crystal structure at a resolution of 2.5 Å, and identified its kinase domain receptor (KDR) binding site using mutational analysis. Overall, the VEGF monomer resembles that of PDGF, but its N-terminal segment is helical rather than extended. The dimerization mode of VEGF is similar to that of PDGF and very different from that of TGF-β. Mutational analysis of VEGF reveals that symmetrical binding sites for KDR are located at each pole of the VEGF homodimer. Each site contains two functional “hot spots” composed of binding determinants presented across the subunit interface. The two most important determinants are located within the largest hot spot on a short, three-stranded sheet that is conserved in PDGF and TGF-β. Functional analysis of the binding epitopes for two receptor-blocking antibodies reveal different binding determinants near each of the KDR binding hot spots.
Resumo:
Binding of erythropoietin (Epo) to the Epo receptor (EpoR) is crucial for production of mature red cells. Although it is well established that the Epo-bound EpoR is a dimer, it is not clear whether, in the absence of ligand, the intact EpoR is a monomer or oligomer. Using antibody-mediated immunofluorescence copatching (oligomerizing) of epitope-tagged receptors at the surface of live cells, we show herein that a major fraction of the full-length murine EpoR exists as preformed dimers/oligomers in BOSC cells, which are human embryo kidney 293T-derived cells. This observed oligomerization is specific because, under the same conditions, epitope-tagged EpoR did not oligomerize with several other tagged receptors (thrombopoietin receptor, transforming growth factor β receptor type II, or prolactin receptor). Strikingly, the EpoR transmembrane (TM) domain but not the extracellular or intracellular domains enabled the prolactin receptor to copatch with EpoR. Preformed EpoR oligomers are not constitutively active and Epo binding was required to induce signaling. In contrast to tyrosine kinase receptors (e.g., insulin receptor), which cannot signal when their TM domain is replaced by the strongly dimerizing TM domain of glycophorin A, the EpoR could tolerate the replacement of its TM domain with that of glycophorin A and retained signaling. We propose a model in which TM domain-induced dimerization maintains unliganded EpoR in an inactive state that can readily be switched to an active state by physiologic levels of Epo.
Resumo:
The structures of the ligand-binding domains (LBD) of the wild-type androgen receptor (AR) and the T877A mutant corresponding to that in LNCaP cells, both bound to dihydrotestosterone, have been refined at 2.0 Å resolution. In contrast to the homodimer seen in the retinoid-X receptor and estrogen receptor LBD structures, the AR LBD is monomeric, possibly because of the extended C terminus of AR, which lies in a groove at the dimerization interface. Binding of the natural ligand dihydrotestosterone by the mutant LBD involves interactions with the same residues as in the wild-type receptor, with the exception of the side chain of threonine 877, which is an alanine residue in the mutant. This structural difference in the binding pocket can explain the ability of the mutant AR found in LNCaP cells (T877A) to accommodate progesterone and other ligands that the wild-type receptor cannot.
Resumo:
Binding of a hormone agonist to a steroid receptor leads to the dissociation of heat shock proteins, dimerization, specific DNA binding, and target gene activation. Although the progesterone antagonist RU486 can induce most of these events, it fails to activate human progesterone receptor (hPR)-dependent transcription. We have previously demonstrated that a conformational change is a key event leading to receptor activation. The major conformational distinction between hormone- and antihormone-bound receptors occurs within the C-terminal portion of the molecule. Furthermore, hPR mutants lacking the C terminus become transcriptionally active in the presence of RU486. These results suggest that the C terminus contains a repressor domain that inhibits the transcriptional activity of the RU486-bound hPR. In this study, we have defined a 12 amino acid (12AA) region in the C terminus of hPR that is necessary and sufficient for the repressor function when fused to the C-terminal truncated hPR or to the GAL4 DNA-binding domain. Mutations in the 12AA domain (aa 917-928) generate an hPR that is active in the presence of RU486. Furthermore, overexpression of the 12AA peptide activates the RU486-bound wild-type hPR without affecting progesterone-dependent activation. These results suggest that association of the 12AA repressor region with a corepressor might inactivate hPR activity when it is bound to RU486. We propose that binding of a hormone agonist to the receptor changes its conformation in the ligand-binding domain so that association with coactivator is promoted and activation of target gene occurs.
Resumo:
Activation of prolactin (PRL)-dependent signaling occurs as the result of ligand-induced dimerization of receptor (PRLr). Although three PRLr isoforms (short, intermediate, and long) have been characterized and are variably coexpressed in PRL-responsive tissues, the functional effects of ligand-induced PRLr isoform heterodimerization have not been examined. To determine whether heterodimeric PRLr complexes were capable of ligand-induced signaling and cellular proliferation, chimeras consisting of the extracellular domain of either the alpha or beta subunit of human granulocyte-macrophage colony-stimulating factor receptor (GM-CSFr) and the intracellular domain of the rat intermediate or short PRLr isoforms (PRLr-I or PRLr-S) were synthesized. Because high affinity binding of GM-CSF is mediated by the extracellular domain of one alpha and beta GM-CSFr pair, use of GM-CSFr/PRLr chimera specifically directed the dimerization of the PRLr intracellular domains within ligand-receptor complexes. Stable transfection of these constructs into the Ba/F3 line was demonstrated by Northern blot and immunoprecipitation analyses. Flow cytometry revealed specific binding of a phycoerythrin-conjugated human GM-CSF to the transfectants, confirming cell surface expression of the chimeric receptors. When tested for their ability to proliferate in response to GM-CSF, only chimeric transfectants expressing GM-CSFr/PRLr-I homodimers demonstrated significant [3H]thymidine incorporation. GM-CSF stimulation of transfectants expressing either GM-CSFr/PRLr-S homodimers or GM-CSFr/PRLr-S+1 heterodimers failed to induce proliferation. Consistent with these data, the GM-CSF-induced activation of two phosphotyrosine kinases, Jak2 and Fyn, was observed only in homodimeric GM-CSFr/PRLr-I transfectants. These results show that the PRLr-S functions as a dominant negative isoform, down-regulating both signaling and proliferation mediated by the receptor complex. Thus, structural motifs necessary for Jak2 and Fyn activation within the carboxy terminus of the PRLr-I, absent in the PRLr-S, are required in each member of the dimeric PRLr complex.
Resumo:
Binding reactions between human growth hormone (hGH) and its receptor provide a detailed account of how a polypeptide hormone activates its receptor and more generally how proteins interact. Through high-resolution structural and functional studies it is seen that hGH uses two different sites (site 1 and site 2) to bind two identical receptor molecules. This sequential dimerization reaction activates the receptor, presumably by bringing the intracellular domains into close proximity so they may activate cytosolic components. As a consequence of this mechanism it is possible to build antagonists to the receptor by introducing mutations in hGH that block binding at site 2 and to build even more potent antagonists by combining these with mutants that enhance binding at site 1. Alanine-scanning mutagenesis of all contact residues at the site 1 interface shows that only a small and complementary set of side chains clustered near the center of the interface affects binding. The most important contacts are hydrophobic, and these are surrounded by polar and charged interactions of lesser importance. Kinetic analysis shows for the most part that the important side chains function to maintain the complex, not to guide the hormone to the receptor. Hormone-induced homodimerization or heterodimerization reactions are turning out to be pervasive mechanisms for signal transduction. Moreover, the molecular recognition principles seen in the hGH-receptor complex are likely to generalize to other protein-protein complexes.