908 resultados para Reasoning under Uncertainty
Resumo:
Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller) or as an added value (risk-seeking controller) to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models.
Resumo:
Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller) or as an added value (risk-seeking controller) to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models. © 2010 Nagengast et al.
Planning the handling of tunnel excavation material - A process of decision making under uncertainty
Resumo:
For the computation of limit cycle oscillations (LCO) at transonic speeds, CFD is required to capture the nonlinear flow features present. The Harmonic Balance method provides an effective means for the computation of LCOs and this paper exploits its efficiency to investigate the impact of variability (both structural a nd aerodynamic) on the aeroelastic behaviour of a 2 dof aerofoil. A Harmonic Balance inviscid CFD solver is coupled with the structural equations and is validated against time marching analyses. Polynomial chaos expansions are employed for the stochastic investiga tion as a faster alternative to Monte Carlo analysis. Adaptive sampling is employed when discontinuities are present. Uncertainties in aerodynamic parameters are looked at first followed by the inclusion of structural variability. Results show the nonlinear effect of Mach number and it’s interaction with the structural parameters on supercritical LCOs. The bifurcation boundaries are well captured by the polynomial chaos.
Resumo:
The Harmonic Balance method is an attractive solution for computing periodic responses and can be an alternative to time domain methods, at a reduced computational cost. The current paper investigates using a Harmonic Balance method for simulating limit cycle oscillations under uncertainty. The Harmonic Balance method is used in conjunction with a non-intrusive polynomial-chaos approach to propagate variability and is validated against Monte Carlo analysis. Results show the potential of the approach for a range of nonlinear dynamical systems, including a full wing configuration exhibiting supercritical and subcritical bifurcations, at a fraction of the cost of performing time domain simulations.
Resumo:
In this paper, a stochastic programming approach is proposed for trading wind energy in a market environment under uncertainty. Uncertainty in the energy market prices is the main cause of high volatility of profits achieved by power producers. The volatile and intermittent nature of wind energy represents another source of uncertainty. Hence, each uncertain parameter is modeled by scenarios, where each scenario represents a plausible realization of the uncertain parameters with an associated occurrence probability. Also, an appropriate risk measurement is considered. The proposed approach is applied on a realistic case study, based on a wind farm in Portugal. Finally, conclusions are duly drawn. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We employ the theory of rational choice to examine whether observable choices from feasible sets of prospects can be generated by the optimization of some underlying decision criterion under uncertainty. Rather than focusing on a specific theory of choice, our objective is to formulate a general approach that is designed to cover the various decision criteria that have been proposed in the literature. We use a mild dominance property to define a class of suitable choice criteria. In addition to rationalizability per se, we characterize transitive and Suzumura consistent rationalizability in the presence of dominance.
Resumo:
This paper analyzes the optimal behavior of farmers in the presence of direct payments and uncertainty. In an empirical analysis for Switzerland, it confirms previously obtained theoretical results and determines the magnitude of the theoretical predicted effects. The results show that direct payments increase agricultural production between 3.7% to 4.8%. Alternatively to direct payments, the production effect of tax reductions is evaluated in order to determine its magnitude. The empirical analysis corroborates the theoretical results of the literature and demonstrates that tax reductions are also distorting, but to a substantially lesser degree if losses are not offset. However, tax reductions, independently whether losses are offset or not, lead to higher government spending than pure direct payments
Resumo:
Resumen tomado de la publicaci??n
Resumo:
The games-against-nature approach to the analysis of uncertainty in decision-making relies on the assumption that the behaviour of a decision-maker can be explained by concepts such as maximin, minimax regret, or a similarly defined criterion. In reality, however, these criteria represent a spectrum and, the actual behaviour of a decision-maker is most likely to embody a mixture of such idealisations. This paper proposes that in game-theoretic approach to decision-making under uncertainty, a more realistic representation of a decision-maker's behaviour can be achieved by synthesising games-against-nature with goal programming into a single framework. The proposed formulation is illustrated by using a well-known example from the literature on mathematical programming models for agricultural-decision-making. (c) 2005 Elsevier Inc. All rights reserved.