998 resultados para Real-time kinematic positioning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frequency recognition is an important task in many engineering fields such as audio signal processing and telecommunications engineering, for example in applications like Dual-Tone Multi-Frequency (DTMF) detection or the recognition of the carrier frequency of a Global Positioning, System (GPS) signal. This paper will present results of investigations on several common Fourier Transform-based frequency recognition algorithms implemented in real time on a Texas Instruments (TI) TMS320C6713 Digital Signal Processor (DSP) core. In addition, suitable metrics are going to be evaluated in order to ascertain which of these selected algorithms is appropriate for audio signal processing(1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research has explored methods for developing a large interactive dynamic 3D surface using an array of interconnected pneumatically actuated cylinders. People can control the surface using body movement, sound or pre-programmed sequences. The main contribution is a method for accurately positioning cylinders without the need for position feedback.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After removal of the Selective Availability in 2000, the ionosphere became the dominant error source for Global Navigation Satellite Systems (GNSS), especially for the high-accuracy (cm-mm) demanding applications like the Precise Point Positioning (PPP) and Real Time Kinematic (RTK) positioning.The common practice of eliminating the ionospheric error, e. g. by the ionosphere free (IF) observable, which is a linear combination of observables on two frequencies such as GPS L1 and L2, accounts for about 99% of the total ionospheric effect, known as the first order ionospheric effect (Ion1). The remaining 1% residual range errors (RREs) in the IF observable are due to the higher - second and third, order ionospheric effects, Ion2 and Ion3, respectively. Both terms are related with the electron content along the signal path; moreover Ion2 term is associated with the influence of the geomagnetic field on the ionospheric refractive index and Ion3 with the ray bending effect of the ionosphere, which can cause significant deviation in the ray trajectory (due to strong electron density gradients in the ionosphere) such that the error contribution of Ion3 can exceed that of Ion2 (Kim and Tinin, 2007).The higher order error terms do not cancel out in the (first order) ionospherically corrected observable and as such, when not accounted for, they can degrade the accuracy of GNSS positioning, depending on the level of the solar activity and geomagnetic and ionospheric conditions (Hoque and Jakowski, 2007). Simulation results from early 1990s show that Ion2 and Ion3 would contribute to the ionospheric error budget by less than 1% of the Ion1 term at GPS frequencies (Datta-Barua et al., 2008). Although the IF observable may provide sufficient accuracy for most GNSS applications, Ion2 and Ion3 need to be considered for higher accuracy demanding applications especially at times of higher solar activity.This paper investigates the higher order ionospheric effects (Ion2 and Ion3, however excluding the ray bending effects associated with Ion3) in the European region in the GNSS positioning considering the precise point positioning (PPP) method. For this purpose observations from four European stations were considered. These observations were taken in four time intervals corresponding to various geophysical conditions: the active and quiet periods of the solar cycle, 2001 and 2006, respectively, excluding the effects of disturbances in the geomagnetic field (i.e. geomagnetic storms), as well as the years of 2001 and 2003, this time including the impact of geomagnetic disturbances. The program RINEX_HO (Marques et al., 2011) was used to calculate the magnitudes of Ion2 and Ion3 on the range measurements as well as the total electron content (TEC) observed on each receiver-satellite link. The program also corrects the GPS observation files for Ion2 and Ion3; thereafter it is possible to perform PPP with both the original and corrected GPS observation files to analyze the impact of the higher order ionospheric error terms excluding the ray bending effect which may become significant especially at low elevation angles (Ioannides and Strangeways, 2002) on the estimated station coordinates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A significant part of film production by the coating industry is based on wet bench processes, where better understanding of their temporal dynamics could facilitate control and optimization. In this work, in situ laser interferometry is applied to study properties of flowing liquids and quantitatively monitor the dip coating batch process. Two oil standards Newtonian, non-volatile, with constant refractive indices and distinct flow properties - were measured under several withdrawing speeds. The dynamics of film physical thickness then depends on time as t(-1/2), and flow characterization becomes possible with high precision (linear slope uncertainty of +/-0.04%). Resulting kinematic viscosities for OP60 and OP400 are 1,17 +/- 0,03. St and 9,9 +/- 0,2 St, respectively. These results agree with nominal values, as provided by the manufacturer. For more complex films (a multi-component sol-gel Zirconyl Chloride aqueous solution) with a varying refractive index, through a direct polarimetric measurement, allowing also determination of the temporal evolution of physical thickness (uncertainty of +/- 0,007 microns) is also determined during dip coating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work analyses a real time orbit estimator using the raw navigation solution provided by GPS receivers. The estimation algorithm considers a Kalman filter with a rather simple orbit dynamic model and random walk modeling of the receiver clock bias and drift. Using the Topex/Poseidon satellite as test bed, characteristics of model truncation, sampling rates and degradation of the GPS receiver (Selective Availability) were analysed. Copyright © 2007 by ABCM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motion control is a sub-field of automation, in which the position and/or velocity of machines are controlled using some type of device. In motion control the position, velocity, force, pressure, etc., profiles are designed in such a way that the different mechanical parts work as an harmonious whole in which a perfect synchronization must be achieved. The real-time exchange of information in the distributed system that is nowadays an industrial plant plays an important role in order to achieve always better performance, better effectiveness and better safety. The network for connecting field devices such as sensors, actuators, field controllers such as PLCs, regulators, drive controller etc., and man-machine interfaces is commonly called fieldbus. Since the motion transmission is now task of the communication system, and not more of kinematic chains as in the past, the communication protocol must assure that the desired profiles, and their properties, are correctly transmitted to the axes then reproduced or else the synchronization among the different parts is lost with all the resulting consequences. In this thesis, the problem of trajectory reconstruction in the case of an event-triggered communication system is faced. The most important feature that a real-time communication system must have is the preservation of the following temporal and spatial properties: absolute temporal consistency, relative temporal consistency, spatial consistency. Starting from the basic system composed by one master and one slave and passing through systems made up by many slaves and one master or many masters and one slave, the problems in the profile reconstruction and temporal properties preservation, and subsequently the synchronization of different profiles in network adopting an event-triggered communication system, have been shown. These networks are characterized by the fact that a common knowledge of the global time is not available. Therefore they are non-deterministic networks. Each topology is analyzed and the proposed solution based on phase-locked loops adopted for the basic master-slave case has been improved to face with the other configurations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hybrid protein, tPA/GFP, consisting of rat tissue plasminogen activator (tPA) and green fluorescent protein (GFP) was expressed in PC12 cells and used to study the distribution, secretory behavior, and dynamics of secretory granules containing tPA in living cells with a neuronal phenotype. High-resolution images demonstrate that tPA/GFP has a growth cone-biased distribution in differentiated cells and that tPA/GFP is transported in granules of the regulated secretory pathway that colocalize with granules containing secretogranin II. Time-lapse images of secretion reveal that secretagogues induce substantial loss of cellular tPA/GFP fluorescence, most importantly from growth cones. Time-lapse images of the axonal transport of granules containing tPA/GFP reveal a surprising complexity to granule dynamics. Some granules undergo canonical fast axonal transport; others move somewhat more slowly, especially in highly fluorescent neurites. Most strikingly, granules traffic bidirectionally along neurites to an extent that depends on granule accumulation, and individual granules can reverse their direction of motion. The retrograde component of this bidirectional transport may help to maintain cellular homeostasis by transporting excess tPA/GFP back toward the cell body. The results presented here provide a novel view of the axonal transport of secretory granules. In addition, the results suggest that tPA is targeted for regulated secretion from growth cones of differentiated cells, strategically positioning tPA to degrade extracellular barriers or to activate other barrier-degrading proteases during axonal elongation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of measurement-enabled production is based on integrating metrology systems into production processes and generated significant interest in industry, due to its potential to increase process capability and accuracy, which in turn reduces production times and eliminates defective parts. One of the most promising methods of integrating metrology into production is the usage of external metrology systems to compensate machine tool errors in real time. The development and experimental performance evaluation of a low-cost, prototype three-axis machine tool that is laser tracker assisted are described in this paper. Real-time corrections of the machine tool's absolute volumetric error have been achieved. As a result, significant increases in static repeatability and accuracy have been demonstrated, allowing the low-cost three-axis machine tool to reliably reach static positioning accuracies below 35 μm throughout its working volume without any prior calibration or error mapping. This is a significant technical development that demonstrated the feasibility of the proposed methods and can have wide-scale industrial applications by enabling low-cost and structural integrity machine tools that could be deployed flexibly as end-effectors of robotic automation, to achieve positional accuracies that were the preserve of large, high-precision machine tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, a renewed attention has been drawn into the dart-thrower's motion as the radiocarpal joint is unique to humans and this is believed to have played a pivotal role in human evolution. Considering the importance of the motion and the complexity of the wrist joint, there have been many articles discussing the kinematics behind this movement. CT scan techniques have been used in a number of these research activities. Due to limitations in the speed of the image acquisition, the positions of the wrist were recorded in static postures. To our knowledge, a data acquisition for the motion with realtime capturing has not been reported. This paper presents the use of a 3D vision-based motion capture device. Leap Motion Controller (LMC), for measuring the radiocarpal joint angles during the dart-thrower's motion in a real-time analysis. The practical capability of the LMC in measuring dart-thrower's motion was examined in a trial involving four subjects and the angles were compared to the angles acquired from an inertial measurement unit (IMU). The results confirmed the LMC can successfully be used in the application of measuring radiocarpal kinematics" of dart-thrower's motion.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Networked control over data networks has received increasing attention in recent years. Among many problems in networked control systems (NCSs) is the need to reduce control latency and jitter and to deal with packet dropouts. This paper introduces our recent progress on a queuing communication architecture for real-time NCS applications, and simple strategies for dealing with packet dropouts. Case studies for a middle-scale process or multiple small-scale processes are presented for TCP/IP based real-time NCSs. Variations of network architecture design are modelled, simulated, and analysed for evaluation of control latency and jitter performance. It is shown that a simple bandwidth upgrade or adding hierarchy does not necessarily bring benefits for performance improvement of control latency and jitter. A co-design of network and control is necessary to maximise the real-time control performance of NCSs