982 resultados para Rb fountain frequency standard
Resumo:
We address the problem of phase retrieval, which is frequently encountered in optical imaging. The measured quantity is the magnitude of the Fourier spectrum of a function (in optics, the function is also referred to as an object). The goal is to recover the object based on the magnitude measurements. In doing so, the standard assumptions are that the object is compactly supported and positive. In this paper, we consider objects that admit a sparse representation in some orthonormal basis. We develop a variant of the Fienup algorithm to incorporate the condition of sparsity and to successively estimate and refine the phase starting from the magnitude measurements. We show that the proposed iterative algorithm possesses Cauchy convergence properties. As far as the modality is concerned, we work with measurements obtained using a frequency-domain optical-coherence tomography experimental setup. The experimental results on real measured data show that the proposed technique exhibits good reconstruction performance even with fewer coefficients taken into account for reconstruction. It also suppresses the autocorrelation artifacts to a significant extent since it estimates the phase accurately.
Resumo:
The amplitude-modulation (AM) and phase-modulation (PM) of an amplitude-modulated frequency-modulated (AM-FM) signal are defined as the modulus and phase angle, respectively, of the analytic signal (AS). The FM is defined as the derivative of the PM. However, this standard definition results in a PM with jump discontinuities in cases when the AM index exceeds unity, resulting in an FM that contains impulses. We propose a new approach to define smooth AM, PM, and FM for the AS, where the PM is computed as the solution to an optimization problem based on a vector interpretation of the AS. Our approach is directly linked to the fractional Hilbert transform (FrHT) and leads to an eigenvalue problem. The resulting PM and AM are shown to be smooth, and in particular, the AM turns out to be bipolar. We show an equivalence of the eigenvalue formulation to the square of the AS, and arrive at a simple method to compute the smooth PM. Some examples on synthesized and real signals are provided to validate the theoretical calculations.
Resumo:
A nearly constant switching frequency current hysteresis controller for a 2-level inverter fed induction motor drive is proposed in this paper: The salient features of this controller are fast dynamics for the current, inherent protection against overloads and less switching frequency variation. The large variation of switching frequency as in the conventional hysteresis controller is avoided by defining a current-error boundary which is obtained from the current-error trajectory of the standard space vector PWM. The current-error boundary is computed at every sampling interval based on the induction machine parameters and from the estimated fundamental stator voltage. The stator currents are always monitored and when the current-error exceeds the boundary, voltage space vector is switched to reduce the current-error. The proposed boundary computation algorithm is applicable in linear and over-modulation region and it is simple to implement in any standard digital signal processor: Detailed experimental verification is done using a 7.5 kW induction motor and the results are given to show the performance of the drive at various operating conditions and validate the proposed advantages.
Resumo:
The standard approach to signal reconstruction in frequency-domain optical-coherence tomography (FDOCT) is to apply the inverse Fourier transform to the measurements. This technique offers limited resolution (due to Heisenberg's uncertainty principle). We propose a new super-resolution reconstruction method based on a parametric representation. We consider multilayer specimens, wherein each layer has a constant refractive index and show that the backscattered signal from such a specimen fits accurately in to the framework of finite-rate-of-innovation (FRI) signal model and is represented by a finite number of free parameters. We deploy the high-resolution Prony method and show that high-quality, super-resolved reconstruction is possible with fewer measurements (about one-fourth of the number required for the standard Fourier technique). To further improve robustness to noise in practical scenarios, we take advantage of an iterated singular-value decomposition algorithm (Cadzow denoiser). We present results of Monte Carlo analyses, and assess statistical efficiency of the reconstruction techniques by comparing their performance against the Cramer-Rao bound. Reconstruction results on experimental data obtained from technical as well as biological specimens show a distinct improvement in resolution and signal-to-reconstruction noise offered by the proposed method in comparison with the standard approach.
Resumo:
The explanation of resonance given in IEEE Std C57.149-2012 to define resonance during frequency response analysis (FRA) measurements on transformers implicitly uses the conditions prevalent during resonance in a series R-L-C circuit. This dependence is evident from the two assertions made in the definition, viz., resulting in zero net reactive impedance, and, accompanied by a zero value appearing in the phase angle of the frequency response function. These two conditions are satisfied (at resonance) only in a series R-L-C circuit and certainly not in a transformer, as has been assumed in the Standard. This can be proved by considering a ladder-network model. Circuit analysis of this ladder network reveals the origin of this fallacy and proves that, at resonance, neither is the ladder network purely resistive and nor is the phase angle (between input voltage and input current) always zero. Also, during FRA measurements, it is often seen that phase angle does not traverse the conventional cyclic path from +90 degrees to -90 degrees (or vice versa) at all resonant frequencies. This peculiar feature can also be explained using pole-zero maps. Simple derivations, simulations and experimental results on an actual winding are presented. In summary, authors believe that this study dispels existing misconceptions about definition of FRA resonance and provides material for its correction in IEEE Std C57.149-2012. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
For a multilayered specimen, the back-scattered signal in frequency-domain optical-coherence tomography (FDOCT) is expressible as a sum of cosines, each corresponding to a change of refractive index in the specimen. Each of the cosines represent a peak in the reconstructed tomogram. We consider a truncated cosine series representation of the signal, with the constraint that the coefficients in the basis expansion be sparse. An l(2) (sum of squared errors) data error is considered with an l(1) (summation of absolute values) constraint on the coefficients. The optimization problem is solved using Weiszfeld's iteratively reweighted least squares (IRLS) algorithm. On real FDOCT data, improved results are obtained over the standard reconstruction technique with lower levels of background measurement noise and artifacts due to a strong l(1) penalty. The previous sparse tomogram reconstruction techniques in the literature proposed collecting sparse samples, necessitating a change in the data capturing process conventionally used in FDOCT. The IRLS-based method proposed in this paper does not suffer from this drawback.
Resumo:
Signals recorded from the brain often show rhythmic patterns at different frequencies, which are tightly coupled to the external stimuli as well as the internal state of the subject. In addition, these signals have very transient structures related to spiking or sudden onset of a stimulus, which have durations not exceeding tens of milliseconds. Further, brain signals are highly nonstationary because both behavioral state and external stimuli can change on a short time scale. It is therefore essential to study brain signals using techniques that can represent both rhythmic and transient components of the signal, something not always possible using standard signal processing techniques such as short time fourier transform, multitaper method, wavelet transform, or Hilbert transform. In this review, we describe a multiscale decomposition technique based on an over-complete dictionary called matching pursuit (MP), and show that it is able to capture both a sharp stimulus-onset transient and a sustained gamma rhythm in local field potential recorded from the primary visual cortex. We compare the performance of MP with other techniques and discuss its advantages and limitations. Data and codes for generating all time-frequency power spectra are provided.
Resumo:
179 p.
Resumo:
ENGLISH: A two-stage sampling design is used to estimate the variances of the numbers of yellowfin in different age groups caught in the eastern Pacific Ocean. For purse seiners, the primary sampling unit (n) is a brine well containing fish from a month-area stratum; the number of fish lengths (m) measured from each well are the secondary units. The fish cannot be selected at random from the wells because of practical limitations. The effects of different sampling methods and other factors on the reliability and precision of statistics derived from the length-frequency data were therefore examined. Modifications are recommended where necessary. Lengths of fish measured during the unloading of six test wells revealed two forms of inherent size stratification: 1) short-term disruptions of existing pattern of sizes, and 2) transition zones between long-term trends in sizes. To some degree, all wells exhibited cyclic changes in mean size and variance during unloading. In half of the wells, it was observed that size selection by the unloaders induced a change in mean size. As a result of stratification, the sequence of sizes removed from all wells was non-random, regardless of whether a well contained fish from a single set or from more than one set. The number of modal sizes in a well was not related to the number of sets. In an additional well composed of fish from several sets, an experiment on vertical mixing indicated that a representative sample of the contents may be restricted to the bottom half of the well. The contents of the test wells were used to generate 25 simulated wells and to compare the results of three sampling methods applied to them. The methods were: (1) random sampling (also used as a standard), (2) protracted sampling, in which the selection process was extended over a large portion of a well, and (3) measuring fish consecutively during removal from the well. Repeated sampling by each method and different combinations indicated that, because the principal source of size variation occurred among primary units, increasing n was the most effective way to reduce the variance estimates of both the age-group sizes and the total number of fish in the landings. Protracted sampling largely circumvented the effects of size stratification, and its performance was essentially comparable to that of random sampling. Sampling by this method is recommended. Consecutive-fish sampling produced more biased estimates with greater variances. Analysis of the 1988 length-frequency samples indicated that, for age groups that appear most frequently in the catch, a minimum sampling frequency of one primary unit in six for each month-area stratum would reduce the coefficients of variation (CV) of their size estimates to approximately 10 percent or less. Additional stratification of samples by set type, rather than month-area alone, further reduced the CV's of scarce age groups, such as the recruits, and potentially improved their accuracy. The CV's of recruitment estimates for completely-fished cohorts during the 198184 period were in the vicinity of 3 to 8 percent. Recruitment estimates and their variances were also relatively insensitive to changes in the individual quarterly catches and variances, respectively, of which they were composed. SPANISH: Se usa un diseño de muestreo de dos etapas para estimar las varianzas de los números de aletas amari11as en distintos grupos de edad capturados en el Océano Pacifico oriental. Para barcos cerqueros, la unidad primaria de muestreo (n) es una bodega de salmuera que contenía peces de un estrato de mes-área; el numero de ta11as de peces (m) medidas de cada bodega es la unidad secundaria. Limitaciones de carácter practico impiden la selección aleatoria de peces de las bodegas. Por 10 tanto, fueron examinados los efectos de distintos métodos de muestreo y otros factores sobre la confiabilidad y precisión de las estadísticas derivadas de los datos de frecuencia de ta11a. Se recomiendan modificaciones donde sean necesarias. Las ta11as de peces medidas durante la descarga de seis bodegas de prueba revelaron dos formas de estratificación inherente por ta11a: 1) perturbaciones a corto plazo en la pauta de ta11as existente, y 2) zonas de transición entre las tendencias a largo plazo en las ta11as. En cierto grado, todas las bodegas mostraron cambios cíclicos en ta11a media y varianza durante la descarga. En la mitad de las bodegas, se observo que selección por ta11a por los descargadores indujo un cambio en la ta11a media. Como resultado de la estratificación, la secuencia de ta11as sacadas de todas las bodegas no fue aleatoria, sin considerar si una bodega contenía peces de un solo lance 0 de mas de uno. El numero de ta11as modales en una bodega no estaba relacionado al numero de lances. En una bodega adicional compuesta de peces de varios lances, un experimento de mezcla vertical indico que una muestra representativa del contenido podría estar limitada a la mitad inferior de la bodega. Se uso el contenido de las bodegas de prueba para generar 25 bodegas simuladas y comparar los resultados de tres métodos de muestreo aplicados a estas. Los métodos fueron: (1) muestreo aleatorio (usado también como norma), (2) muestreo extendido, en el cual el proceso de selección fue extendido sobre una porción grande de una bodega, y (3) medición consecutiva de peces durante la descarga de la bodega. EI muestreo repetido con cada método y distintas combinaciones de n y m indico que, puesto que la fuente principal de variación de ta11a ocurría entre las unidades primarias, aumentar n fue la manera mas eficaz de reducir las estimaciones de la varianza de las ta11as de los grupos de edad y el numero total de peces en los desembarcos. El muestreo extendido evito mayormente los efectos de la estratificación por ta11a, y su desempeño fue esencialmente comparable a aquel del muestreo aleatorio. Se recomienda muestrear con este método. El muestreo de peces consecutivos produjo estimaciones mas sesgadas con mayores varianzas. Un análisis de las muestras de frecuencia de ta11a de 1988 indico que, para los grupos de edad que aparecen con mayor frecuencia en la captura, una frecuencia de muestreo minima de una unidad primaria de cada seis para cada estrato de mes-área reduciría los coeficientes de variación (CV) de las estimaciones de ta11a correspondientes a aproximadamente 10% 0 menos. Una estratificación adicional de las muestras por tipo de lance, y no solamente mes-área, redujo aun mas los CV de los grupos de edad escasos, tales como los reclutas, y mejoró potencialmente su precisión. Los CV de las estimaciones del reclutamiento para las cohortes completamente pescadas durante 1981-1984 fueron alrededor de 3-8%. Las estimaciones del reclutamiento y sus varianzas fueron también relativamente insensibles a cambios en las capturas de trimestres individuales y las varianzas, respectivamente, de las cuales fueron derivadas. (PDF contains 70 pages)
Resumo:
We investigate the effect of the electric field maximum on the Rabi flopping and the generated higher frequency spectra properties by solving Maxwell-Bloch equations without invoking any standard approximations. It is found that the maximum of the electric field will lead to carrier-wave Rabi flopping (CWRF) through reversion dynamics which will be more evident when the applied field enters the sub-one-cycle regime. Therefore, under the interaction of sub-one-cycle pulses, the Rabi flopping follows the transient electric field tightly through the oscillation and reversion dynamics, which is in contrast to the conventional envelope Rabi flopping. Complete or incomplete population inversion can be realized through the control of the carrier-envelope phase (CEP). Furthermore, the generated higher frequency spectra will be changed from distinct to continuous or irregular with the variation of the CEP. Our results demonstrate that due to the evident maximum behavior of the electric field, pulses with different CEP give rise to different CWRFs, and then different degree of interferences lead to different higher frequency spectral features.
Resumo:
We propose a surface planar ion chip which forms a linear radio frequency Paul ion trap. The electrodes reside in the two planes of a chip, and the trap axis is located above the chip surface. Its electric field and potential distribution are similar to the standard linear radio frequency Paul ion trap. This ion trap geometry may be greatly meaningful for quantum information processing.
Resumo:
We study the behaviour of atoms in a field with both static magnetic field and radio frequency (rf) magnetic field. We calculate the adiabatic potential of atoms numerically beyond the usually rotating wave approximation, and it is pointed that there is a great difference between using these two methods. We find the preconditions when RWA is valid. In the extreme of static field almost parallel to rf field, we reach an analytic formula. Finally, we apply this method to Rb-87 and propose a guide based on an rf field on atom chip.
Resumo:
We have experimentally studied the parametric excitation of Rb-87 atoms in a quadrupole-Ioffe-configuration trap. The temperature of an atomic cloud and number of trapped atoms versus time and modulation frequency of the parametric excitation field have been measured. We also noticed that the contribution of atomic collisions to the energy distributions can not be ignored in the case of weak excitation, which results in a lower temperature of the atomic cloud than by Gehm [Phys. Rev. A 58, 3914 (1998)] predicted.
Resumo:
An 8 × 8 pipelined parallel multiplier which uses the Dadda scheme is presented. The multiplier has been implemented in a 3-μm n-well CMOS process with two layers of metal using a standard cell automatic placement and routing program. The design uses a form of pipelined carry look-ahead adder in the final stage of summation, thus providing a significant contribution to the high performance of the multiplier. The design is expected to operate at a clock frequency of at least 50 MHz and has a flush time of seven clock cycles. The design illustrates a possible method of implementing an irregular architecture in VLSI using multiple levels of low-resistance, low-capacitance interconnect and automated layout techniques.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): After 1960, the Santa Cruz River at Tucson, Arizona, an ephemeral stream normally dominated by summer floods, experienced an apparent increased frequency of flooding coincident with an increased percentage of annual floods occurring in fall and winter. This shift reflects large-scale and low-frequency changes in the eastern Pacific Ocean, in part associated with El Niño-Southern Oscillation (ENSO) phenomena. ... Questions are raised about the validity of standard methods of flood-frequency analysis to estimate regulatory and designed floods.