909 resultados para Rat BDL
Resumo:
Utilizing a mono-specific antiserum produced in rabbits to hog kidney aromatic L-amino acid decarboxylase (AADC), the enzyme was localized in rat kidney by immunoperoxidase staining. AADC was located predominantly in the proximal convoluted tubules; there was also weak staining in the distal convoluted tubules and collecting ducts. An increase in dietary potassium or sodium intake produced no change in density or distribution of AADC staining in kidney. An assay of AADC enzyme activity showed no difference in cortex or medulla with chronic potassium loading. A change in distribution or activity of renal AADC does not explain the postulated dopaminergic modulation of renal function that occurs with potassium or sodium loading.
Resumo:
Objective The aim of this study was to demonstrate the potential of near-infrared (NIR) spectroscopy for categorizing cartilage degeneration induced in animal models. Method Three models of osteoarthritic degeneration were induced in laboratory rats via one of the following methods: (i) menisectomy (MSX); (ii) anterior cruciate ligament transaction (ACLT); and (iii) intra-articular injection of mono-ido-acetete (1 mg) (MIA), in the right knee joint, with 12 rats per model group. After 8 weeks, the animals were sacrificed and tibial knee joints were collected. A custom-made nearinfrared (NIR) probe of diameter 5 mm was placed on the cartilage surface and spectral data were acquired from each specimen in the wavenumber range 4 000 – 12 500 cm−1. Following spectral data acquisition, the specimens were fixed and Safranin–O staining was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis based on principal component analysis and partial least squares regression, the spectral data were then related to the Mankinscores of the samples tested. Results Mild to severe degenerative cartilage changes were observed in the subject animals. The ACLT models showed mild cartilage degeneration, MSX models moderate, and MIA severe cartilage degenerative changes both morphologically and histologically. Our result demonstrate that NIR spectroscopic information is capable of separating the cartilage samples into different groups relative to the severity of degeneration, with NIR correlating significantly with their Mankinscore (R2 = 88.85%). Conclusion We conclude that NIR is a viable tool for evaluating articularcartilage health and physical properties such as change in thickness with degeneration.
Resumo:
OBJECTIVE: : Acute traumatic coagulopathy occurs early in hemorrhagic trauma and is a major contributor to mortality and morbidity. Our aim was to examine the effect of small-volume 7.5% NaCl adenocaine (adenosine and lidocaine, adenocaine) and Mg on hypotensive resuscitation and coagulopathy in the rat model of severe hemorrhagic shock. DESIGN: : Prospective randomized laboratory investigation. SUBJECTS: : A total of 68 male Sprague Dawley Rats. INTERVENTION: : Post-hemorrhagic shock treatment for acute traumatic coagulopathy. MEASUREMENTS AND METHODS: : Nonheparinized male Sprague-Dawley rats (300-450 g, n = 68) were randomly assigned to either: 1) untreated; 2) 7.5% NaCl; 3) 7.5% NaCl adenocaine; 4) 7.5% NaCl Mg; or 5) 7.5% NaCl adenocaine/Mg. Hemorrhagic shock was induced by phlebotomy to mean arterial pressure of 35-40 mm Hg for 20 mins (~40% blood loss), and animals were left in shock for 60 mins. Bolus (0.3 mL) was injected into the femoral vein and hemodynamics monitored. Blood was collected in Na citrate (3.2%) tubes, centrifuged, and the plasma snap frozen in liquid N2 and stored at -80°C. Coagulation was assessed using activated partial thromboplastin times and prothrombin times. RESULTS: : Small-volume 7.5% NaCl adenocaine and 7.5% NaCl adenocaine/Mg were the only two groups that gradually increased mean arterial pressure 1.6-fold from 38-39 mm Hg to 52 and 64 mm Hg, respectively, at 60 mins (p < .05). Baseline plasma activated partial thromboplastin time was 17 ± 0.5 secs and increased to 63 ± 21 secs after bleeding time, and 217 ± 32 secs after 60-min shock. At 60-min resuscitation, activated partial thromboplastin time values for untreated, 7.5% NaCl, 7.5% NaCl/Mg, and 7.5% NaCl adenocaine rats were 269 ± 31 secs, 262 ± 38 secs, 150 ± 43 secs, and 244 ± 38 secs, respectively. In contrast, activated partial thromboplastin time for 7.5% NaCl adenocaine/Mg was 24 ± 2 secs (p < .05). Baseline prothrombin time was 28 ± 0.8 secs (n = 8) and followed a similar pattern of correction. CONCLUSIONS: : Plasma activated partial thromboplastin time and prothrombin time increased over 10-fold during the bleed and shock periods prior to resuscitation, and a small-volume (~1 mL/kg) IV bolus of 7.5% NaCl AL/Mg was the only treatment group that raised mean arterial pressure into the permissive range and returned activated partial thromboplastin time and prothrombin time clotting times to baseline at 60 mins.
Expression and distribution of cell-surface proteoglycans in the normal Lewis rat molar periodontium
Resumo:
Cell-surface proteoglycans participate in several biological functions such as cell cell and cell-matrix interactions, cell adhesion, the binding to various growth factors as co-receptors and repair. To understand better the expression and distribution of cell-surface proteoglycans in the periodontal tissues, an immunohistochemical evaluation of the normal Lewis rat molar periodontium using panels of antibodies for syndecan-1, -2, -4, glypican and betaglycan was carried out. Our results demonstrated the expression and distribution of all proteoglycans in the suprabasal gingival epithelium, soft and hard connective tissues. Both cellular and matrix localization was evident within the various periodontal compartments. The presence of these cell-surface proteoglycans indicates the potential for roles in the process of tissue homeostasis, repair or regeneration in periodontium of which each function requires further study.
Resumo:
In dentinogenesis, certain growth factors, matrix proteoglycans, and proteins are directly or indirectly dependent on growth hormone. The hypothesis that growth hormone up-regulates the expression of enzymes, sialoproteins, and other extracellular matrix proteins implicated in the formation and mineralization of tooth and bone matrices was tested by the treatment of Lewis dwarf rats with growth hormone over 5 days. The molar teeth were processed for immunohistochemical demonstration of bone-alkaline phosphatase, bone morphogenetic proteins-2 and -4, osteocalcin, osteopontin, bone sialoprotein, and E11 protein. Odontoblasts responded to growth hormone by more cells expressing bone morphogenetic protein, alkaline phosphatase, osteocalcin, and osteopontin. No changes were found in bone sialoprotein or E11 protein expression. Thus, growth hormone may stimulate odontoblasts to express several growth factors and matrix proteins associated with dentin matrix biosynthesis in mature rat molars.
Resumo:
BACKGROUND: The plasminogen activator system has been proposed to play a role in proteolytic degradation of extracellular matrices in tissue remodeling, including wound healing. The aim of this study was to elucidate the presence of components of the plasminogen activator system during different stages of periodontal wound healing. METHODS: Periodontal wounds were created around the molars of adult rats and healing was followed for 28 days. Immunohistochemical analyses of the healing tissues and an analysis of the periodontal wound healing fluid by ELISA were carried out for the detection of tissue-type plasminogen activator (t-PA), urokinase-type plasminogen activator (u-PA), and 2 plasminogen activator inhibitors (PAI-1 and PAI-2). RESULTS: During the early stages (days 1 to 3) of periodontal wound healing, PAI-1 and PAI-2 were found to be closely associated with the deposition of a fibrin clot in the gingival sulcus. These components were strongly associated with the infiltrating inflammatory cells around the fibrin clot. During days 3 to 7, u-PA, PAI-1, and PAI-2 were associated with cells (particularly monocytes/macrophages, fibroblasts, and endothelial cells) in the newly formed granulation tissue. During days 7 to 14, a new attachment apparatus was formed during which PAI-1, PAI-2, and u-PA were localized in both periodontal ligament fibroblasts (PDL) and epithelial cells at sites where these cells were attaching to the root surface. In the periodontal wound healing fluid, the concentration for t-PA increased and peaked during the first week. PAI-2 had a similar expression to t-PA, but at a lower level over the entire wound-healing period. CONCLUSIONS: These findings indicate that the plasminogen activator system is involved in the entire process of periodontal wound healing, in particular with the formation of fibrin matrix on the root surface and its replacement by granulation tissue, as well as the subsequent formation of the attachment of soft tissue to the root surface during the later stages of wound repair.
Resumo:
Cell-surface proteoglycans participate in several biological functions including interactions with adhesion molecules, growth factors and a variety of other effector molecules. Accordingly, these molecules play a central role in various aspects of cell–cell and cell–matrix interactions. To investigate the expression and distribution of the cell surface proteoglycans, syndecan-1 and -2, during periodontal wound healing, immunohistochemical analyses were carried out using monoclonal antibodies against syndecan-1, or -2 core proteins. Both syndecan-1 and -2 were expressed and distributed differentially at various stages of early inflammatory cell infiltration, granulation tissue formation, and tissue remodeling in periodontal wound healing. Expression of syndecan-1 was noted in inflammatory cells within and around the fibrin clots during the earliest stages of inflammatory cell infiltration. During granulation tissue formation it was noted in fibroblast-like cells and newly formed blood vessels. Syndecan-1 was not seen in newly formed bone or cementum matrix at any of the time periods studied. Syndecan-1 expression was generally less during the late stages of wound healing but was markedly expressed in cells that were close to the repairing junctional epithelium. In contrast, syndecan-2 expression and distribution was not evident at the early stages of inflammatory cell infiltration. During the formation of granulation tissue and subsequent tissue remodeling, syndecan-2 was expressed extracellularly in the newly formed fibrils which were oriented toward the root surface. Syndecan-2 was found to be significantly expressed on cells that were close to the root surface and within the matrix of repaired cementum covering root dentin as well as at the alveolar bone edge. These findings indicate that syndecan-1 and -2 may have distinctive functions during wound healing of the periodontium. The appearance of syndecan-1 may involve both cell–cell and cell–matrix interactions, while syndecan-2 showed a predilection to associate with cell–matrix interactions during hard tissue formation.
Resumo:
Determining the properties and integrity of subchondral bone in the developmental stages of osteoarthritis, especially in a form that can facilitate real-time characterization for diagnostic and decision-making purposes, is still a matter for research and development. This paper presents relationships between near infrared absorption spectra and properties of subchondral bone obtained from 3 models of osteoarthritic degeneration induced in laboratory rats via: (i) menisectomy (MSX); (ii) anterior cruciate ligament transaction (ACL); and (iii) intra-articular injection of mono-ido-acetate (1 mg) (MIA), in the right knee joint, with 12 rats per model group (N = 36). After 8 weeks, the animals were sacrificed and knee joints were collected. A custom-made diffuse reflectance NIR probe of diameter 5 mm was placed on the tibial surface and spectral data were acquired from each specimen in the wavenumber range 4000–12 500 cm− 1. After spectral acquisition, micro computed tomography (micro-CT) was performed on the samples and subchondral bone parameters namely: bone volume (BV) and bone mineral density (BMD) were extracted from the micro-CT data. Statistical correlation was then conducted between these parameters and regions of the near infrared spectra using multivariate techniques including principal component analysis (PCA), discriminant analysis (DA), and partial least squares (PLS) regression. Statistically significant linear correlations were found between the near infrared absorption spectra and subchondral bone BMD (R2 = 98.84%) and BV (R2 = 97.87%). In conclusion, near infrared spectroscopic probing can be used to detect, qualify and quantify changes in the composition of the subchondral bone, and could potentially assist in distinguishing healthy from OA bone as demonstrated with our laboratory rat models.
Resumo:
Biorobotics has the potential to provide an integrated understanding from neural systems to behavior that is neither ethical nor technically feasible with living systems. Robots that can interact with animals in their natural environment open new possibilities for empirical studies in neuroscience. However, designing a robot that can interact with a rodent requires considerations that span a range of disciplines. For the rat's safety, the body form and movements of the robot need to take into consideration the safety of the animal, an appropriate size for the rodent arenas, and behaviors for interaction. For the robot's safety, its form must be robust in the face of typically inquisitive and potentially aggressive behaviors by the rodent, which can include chewing on exposed parts, including electronics, and deliberate or accidental fouling. We designed a rat-sized robot, the iRat (intelligent rat animat technology) for studies in neuroscience. The iRat is about the same size as a rat and has the ability to navigate autonomously around small environments. In this study we report the first interactions between the iRat and real rodents in a free exploration task. Studies with five rats show that the rats and iRat interact safely for both parties.
Resumo:
The promise of metabonomics, a new "omics" technique, to validate Chinese medicines and the compatibility of Chinese formulas has been appreciated. The present study was undertaken to explore the excretion pattern of low molecular mass metabolites in the male Wistar-derived rat model of kidney yin deficiency induced with thyroxine and reserpine as well as the therapeutic effect of Liu Wei Di Huang Wan (LW) and its separated prescriptions, a classic traditional Chinese medicine formula for treating kidney yin deficiency in China. The study utilized ultra-performance liquid chromatography/electrospray ionization synapt high definition mass spectrometry (UPLC/ESI-SYNAPT-HDMS) in both negative and positive electrospray ionization (ESI). At the same time, blood biochemistry was examined to identify specific changes in the kidney yin deficiency. Distinct changes in the pattern of metabolites, as a result of daily administration of thyroxine and reserpine, were observed by UPLC-HDMS combined with a principal component analysis (PCA). The changes in metabolic profiling were restored to their baseline values after treatment with LW according to the PCA score plots. Altogether, the current metabonomic approach based on UPLC-HDMS and orthogonal projection to latent structures discriminate analysis (OPLS-DA) indicated 20 ions (14 in the negative mode, 8 in the positive mode, and 2 in both) as "differentiating metabolites".
Resumo:
A simple, sensitive, and validated method was developed for simultaneous determination of scoparone, capillarisin, rhein, and emodin in rat urine by ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC-MS). The urinary samples were analyzed on an Acquity UPLC BEH C18 1.7 microm 2.1x50 mm column. Scoparone, capillarisin, rhein, and emodin in rat urine were simultaneously analyzed with good separation. The lower limits of detection were 6.0, 9.0, 7.0, and 3.0 ng/mL, and the lower limits of quantification were 20.0, 33.0, 24.0, and 12.0 ng/mL for scoparone, capillarisin, rhein, and emodin, respectively. The intra- and inter-day precisions (RSD) were less than 9%. The intra- and inter-accuracies were found to be in the range of 94.14-104.54% for scoparone, 101.72-107.34% for capillarisin, 95.24-103.59% for rhein, and 101.32-107.82% for emodin at three concentration levels. The absolute recoveries for scoparone, capillarisin, rhein, and emodin were not less than 77.0%. The developed method has been applied to determine scoparone, capillarisin, rhein, and emodin in rat urine after oral administration of Yin Chen Hao Tang preparation, a traditional Chinese medicine formulation widely used in China for treatment of jaundice and liver disorders.
Resumo:
Scoparone (6,7-dimethoxycoumarin) is known to have a wide range of pharmacological properties. In this study, a rapid and validated ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-QTof-MS) method was developed to investigate the metabolism of scoparone in rat for the first time. The new method reduced the sample handling and analytical time by three- to six-fold, and the detection limit by five- to 1000-fold, compared to published methods. Far more metabolites were detected and identified compared to published data, which were preliminarily identified as scopoletin, isoscopoletin, isofraxidin, and fraxidin, respectively, when subjected to tandem mass spectrometry analyses. It is found that the metabolic trajectory of scoparone in rat focused on phase I metabolism which is obviously different from published results, and revealed a wide range of pharmacological properties of scoparone partly attributed to the bioactivities of its metabolites.
Resumo:
Herbal Fructus Corni is a folk medicine with a long history of safe use for treating osteoporosis in postmenopausal women or elderly men in Asia. Sweroside is a bioactive herbal ingredient isolated from Fructus Corni, which has been widely used for the treatment of osteoporosis in traditional Chinese medicine (TCM). Unfortunately, the working mechanisms of this compound are difficult to determine and thus remain unclear. The aim of the study was performed to determine the potential molecular mechanism of the anti-osteoporotic effect of sweroside on the human MG-63 cells and rat osteoblasts. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was used to observe the effect of sweroside on cell proliferation. The activity of alkaline phosphatase (ALP) and the amount of osteocalcin were also assayed the cell differentiation. Sweroside significantly increased the proliferation of human MG-63 cells and rat osteoblasts (P<0.01). It increased the activity of ALP, and osteocalcin was also elevated in response to sweroside (P<0.05). Of note, flowcytometer assay showed that sweroside can attenuate and inhibit apoptosis. Sweroside has a direct osteogenic effect on the proliferation and differentiation of cultured human MG-63 cells and rat osteoblasts in vitro. These data will help in understanding the molecular mechanisms of therapeutic efficacy of sweroside, and highlight insights into drug discovery. In the current study, sweroside has been suggested to be a promising osteoporosis therapeutic natural product.